Skip to main content
Log in

Physiological and Biochemical Effects of Heat Shock Stress and Determination of Molecular Markers Related to Heat Tolerance in Maize Hybrids

Physiologische und biochemische Auswirkungen einer Hitzeschockbelastung und Bestimmung von molekularen Markern für die Hitzetoleranz bei Maishybriden

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Heat shock stress causes alteration in the physiological and molecular characteristics in plants due to the generation of reactive oxygen species which cause reduction in plant growth. In this study, four maize hybrids (Sc122, TWC 321, TWC 324 and TWC 352) were grown under normal temperature (25 °C) and after 12 days, a set of the four hybrids with three replicates was exposed to heat shock (45 °C) for 2 h. The results showed on the one hand that heat shock stress caused an increment in phytohormones (auxin, gibberellic acid and zeatin) except abscisic acid in two maize hybrids (Sc122 and TWC 321). On the other hand, all the parameters mentioned above were decreased significantly in the other maize hybrids (TWC 324 and TWC 352). In addition, osmolytes (proline and glycine betaine), polyamines (spermidine, putrescine, and spermine) and total soluble sugars were significantly increased in all maize hybrids but the most pronounced increases were recorded in the two maize hybrids Sc122 and TWC 321. These results confirm a previous study that the maize hybrids Sc122 and TWC 321 are considered as tolerant genotypes and the other two hybrids (TWC 324 and TWC 352) as sensitive genotypes. Differential gene expression under normal and heat shock conditions were adopted to search for some heat responsive genes in Egyptian maize hybrids. Three out of the five designed primers produced fragments. Alignment analysis revealed resemblance of the resulted fragments and some heat responsive genes in different species.

Zusammenfassung

Hitzeschockstress bewirkt eine Veränderung der physiologischen und molekularen Eigenschaften von Pflanzen durch die Bildung von reaktiven Sauerstoffspezies, was zu einer Verringerung des Pflanzenwachstums führt. In dieser Studie wurden vier Maishybriden (Sc122, TWC 321, TWC 324 und TWC 352) bei Normaltemperatur (25 °C) gezüchtet und nach 12 Tagen wurde ein Satz der vier Hybriden mit drei Replikaten 2 h lang einem Hitzeschock (45 °C) ausgesetzt. Die Ergebnisse zeigten einerseits, dass Hitzeschockstress einen Anstieg der Phytohormone (Auxin, Gibberellinsäure und Zeatin) – bis auf Abscisinsäure – bei zwei Maishybriden (Sc122 und TWC 321) verursacht. Andererseits wurden alle oben genannten Parameter bei den anderen Maishybriden (TWC 324 und TWC 352) signifikant reduziert. Darüber hinaus wurden Osmolyten (Prolin und Glycinbetain), Polyamine (Spermidin, Putrescin und Spermin) und lösliche Zucker bei allen Maishybriden signifikant erhöht, wobei die stärksten Zuwächse bei den beiden Maishybriden Sc122 und TWC 321 zu verzeichnen waren. Diese Ergebnisse bestätigen eine frühere Studie, dass die Maishybriden Sc122 und TWC 321 als tolerante Genotypen und die beiden anderen Hybriden (TWC 324 und TWC 352) als sensitive Genotypen betrachtet werden. Die differenzielle Genexpression unter normalen und Hitzeschockbedingungen wurde angenommen, um nach hitzeempfindlichen Genen in ägyptischen Maishybriden zu suchen. Drei der fünf entwickelten Primer produzierten Fragmente. Die Alignment-Analyse ergab eine Ähnlichkeit der resultierenden Fragmente mit einigen hitzeempfindlichen Genen bei verschiedenen Arten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abass SM, Mohamed HI (2011) Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J Bot 41:75–83

    Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V et al (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5¢-region of Arabidopsis thaliana cor15A has cis-acting elements that confer cold, drought and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  Google Scholar 

  • Bartolozzi F, Bertazza G, Bassi D, Cristoferi G (1997) Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr A 758:99–107

    Article  Google Scholar 

  • Bates LS, Waklren RP, Teare ID (1973) Rapid determination of free proline water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bouchereau A, Duhaze C, Martin-Tanguy J, Guegan JP, Larher F (1999) Improved analytical methods for determination of nitrogenous stress metabolites occurring in Limonium species. J Chromatogr A 836:209–221

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Dgany O, Gonzalez A, Sofer O, Wang W, Zolotnitsky G, Wolf A, Shoham Y, Altman A, Wolf SG, Shoseyov O, Almog O (2004) The structural basis of the thermostability of SP1, a novel plant (Populus tremula) boiling stable protein. J Biol Chem 279:51516–51523

    Article  CAS  Google Scholar 

  • Duncan BD (1955) Multiple ranges and multiple F. Test. Biometrics 2:1–42

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley & Sons, Singapore, p 680

    Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Guerrier G, Brignolas F, Thierry C, Courtois M, Kahlem G (2000) Organic solutes protect drought tolerant Populus x euramericana against reactive oxygen species. Plant Physiol 156:93–99

    Article  CAS  Google Scholar 

  • Han Y, Fan Sh, Zhang Q, Wang Y (2013) Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings. J Agric Sci 4(5B):112–115

    CAS  Google Scholar 

  • Hayat Sh, Hayat Q, Alyemeni MN, Wani ASh, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  Google Scholar 

  • Hermosa R, Botella L, Keck M, Jimenez JA, Montero-Barrientos M, Arbona V, Gomez-Cadenas A, Monte E, Nicolas C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, p 944

    Google Scholar 

  • Huerta-Ocampo JA, León-Galván MF, Ortega-Cruz LB, Barrera-Pacheco A, De León-Rodríguez A, Mendoza-Hernández G, de la Rosa AP (2011) Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). Plant Biol 13(3):472–482

    Article  CAS  Google Scholar 

  • Islam MA, Blake TJ, Kocacinar F, Lada R (2003) Ambiol, spermine and aminoethoxyvinylglycine prevent water stress and protect membranes in Pinus strobus under drought. Trees Struct Funct 17:278–284

    CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kang HG, Singh KB (2000) Characterization of salicylic acidresponsive, Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J 21:329–339

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  Google Scholar 

  • Kavi Kishore PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KR, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  Google Scholar 

  • Kocsy G, Pál M, SoltŽsz A, Szalai G, Boldizsár Á, Kovács V, Janda T (2011) Low temperature and oxidative stress in cereals. Acta Agro Hung 59:169–189

    Article  Google Scholar 

  • Latif HH, Mohamed HI (2016) Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. South Afr J Bot 106:221–231

    Article  CAS  Google Scholar 

  • Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22(8):2894–2907

    Article  CAS  Google Scholar 

  • Macková H, Hronková M, Dobrá J, Turečková V, Novák O et al (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64(10):2805–2815

    Article  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  Google Scholar 

  • Maijala RL, Eerola SH (1993) Contaminant lactic acid bacteria of dry sausages produce histamine and tyramine. Meat Sci 35:387–395

    Article  CAS  Google Scholar 

  • Merewitz EB, Du H, Yu W, Liu Y, Gianfagna Th, Huang B (2012) Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. J Exp Bot 63(3):1315–1328

    Article  CAS  Google Scholar 

  • Mietz JL, Karmas E (1977) Chemical quality index of canned tuna as determined by high pressure liquid chromatography. J Food Sci 42:155–158

    Article  CAS  Google Scholar 

  • Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes. Rom Biotechnol Lett 18:8823–8831

    CAS  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23(3):545–556

    Article  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Muller P, Hilgenberg W (1986) Isomers of zeatin and zeatin riboside in club root tissue: evidence for trans-zeatin biosynthesis by plasma diophora brassicae. Physiol Plant 66:245–250

    Article  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  Google Scholar 

  • Reis R, da Cunha B, Martins P, Martins M, Alekcevetch J, Chalfun A (2014) Induced over-expression of ArDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221:59–68

    Article  Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycinebetaine in chloroplasts provide osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakr MM, El-Sherif NA, Ghonaim MM (2015) Biochemical assessments of heat tolerance/sensitivity in some Egyptian Zea mays L. hybrids. Egypt J Plant Breed 19(6):1837–1851

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  Google Scholar 

  • Schobert B (1977) Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol 68:17–26

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    Article  CAS  Google Scholar 

  • Shevyakova NI, Rakitin VY, Duong DB, Sadomov NG, Kuznetsov VV (2001) Heat shock-induced cadaverine accumulation and translocation throughout the plant. Plant Sci 161:1125–1133

    Article  CAS  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell, Ames

    Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci Usa 94:7685–7690

    Article  CAS  Google Scholar 

  • Vogel AJ (1975) A textbook of practical organic chemistry, 3rd edn. Book Society and Longmans Growth Ltd, London.

    Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48(1):30–41

    Article  CAS  Google Scholar 

  • de Wit M, Lorrain S, Fankhauser C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24

    Article  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856

    Article  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  Google Scholar 

  • Young TE, Ling CJ, Geisler-Lee J, Tanguay RL, Caldwell C, Gallie DR (2001) Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol 127:777–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

H.I. Mohamed, N.A. Ashry and M.M. Ghonaim declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.I., Ashry, N.A. & Ghonaim, M.M. Physiological and Biochemical Effects of Heat Shock Stress and Determination of Molecular Markers Related to Heat Tolerance in Maize Hybrids. Gesunde Pflanzen 71, 213–222 (2019). https://doi.org/10.1007/s10343-019-00467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00467-5

Keywords

Schlüsselwörter

Navigation