Skip to main content
Log in

Costly signalling theory and dishonest signalling

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

We analyze the model of costly signalling theory and show that dishonest signalling is still a possible outcome even for costly indices that cannot be faked. We assume that signallers pay the cost for sending a signal and that the cost correlates negatively with signaller’s quality q and correlates positively with signal’s strength s. We show that for any given function f with continuous derivative, there is a cost function t(s, q) increasing in s and decreasing in q so that when the signaller of quality q optimizes the strength of the signal, it will send the signal of strength f(q). In particular, optimal signals can follow any given function f. Our results can explain the curvilinear relationship between the strength of signals and physical condition of three-spined stickleback (Gasterosteus aculeatus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14(12):1300–1312

    Article  Google Scholar 

  • Bergstrom CT, Számadó S, Lachmann M (2002) Separating equilibria in continuous signalling games. Philos Trans R Soc Lond B Biol Sci 357(1427):1595–1606

    Article  Google Scholar 

  • Biernaskie JM, Grafen A, Perry JC (2014) The evolution of index signals to avoid the cost of dishonesty. Proc R Soc B 281(1790):20140876

    Article  Google Scholar 

  • Biernaskie JM, Perry JC, Grafen A (2018) A general model of biological signals, from cues to handicaps. Evolution Lett 2(3):201–209

    Article  Google Scholar 

  • Blount JD, Speed MP, Ruxton GD, Stephens PA (2009) Warning displays may function as honest signals of toxicity. Proc R Soc Lond B Biol Sci 276(1658):871–877

    Article  Google Scholar 

  • Blount JD, Rowland HM, Drijfhout FP, Endler JA, Inger R, Sloggett JJ, Hurst GD, Hodgson DJ, Speed MP (2012) How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Funct Ecol 26(2):334–342

    Article  Google Scholar 

  • Broom M, Rychtář J (2013) Game-theoretical models in biology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Candolin U (1999) The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim Behav 58(6):1261–1267

    Article  CAS  Google Scholar 

  • Davies NB, Krebs JR, West SA (2012) An introduction to behavioural ecology. Wiley, New York

    Google Scholar 

  • Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337(6096):860–864

    Article  CAS  Google Scholar 

  • Fraser B (2012) Costly signalling theories: beyond the handicap principle. Biol Philos 27(2):263–278

    Article  Google Scholar 

  • Godfray HCJ (1991) Signalling of need by offspring to their parents. Nature 352(6333):328

    Article  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144(4):517–546

    Article  CAS  Google Scholar 

  • Grose J (2011) Modelling and the fall and rise of the handicap principle. Biol Philos 26(5):677–696

    Article  Google Scholar 

  • Higham JP (2014) How does honest costly signaling work? Behav Ecol 25(1):8–11

    Article  Google Scholar 

  • Holman L (2012) Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone. Evolution 66(7):2094–2105

    Article  CAS  Google Scholar 

  • Huttegger SM, Bruner JP, Zollman KJ (2015) The handicap principle is an artifact. Philos Sci 82 (5):997–1009

    Article  Google Scholar 

  • Lachmann M, Számadó S, Bergstrom CT (2001) Cost and conflict in animal signals and human language. Proc Natl Acad Sci. 98(23):13189–13194

    Article  CAS  Google Scholar 

  • Lüpold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Luepold SHB, Belote JM, Pitnick S (2016) How sexual selection can drive the evolution of costly sperm ornamentation. Nature 533(7604):535

    Article  Google Scholar 

  • Maynard Smith J (1991) Honest signalling: The philip sidney game. Animal Behaviour

  • Maynard Smith J, Harper DG (1995) Animal signals: models and terminology. J Theor Biol 177(3):305–311

    Article  Google Scholar 

  • Meacham F, Perlmutter A, Bergstrom CT (2013) Honest signalling with costly gambles. J R Soc Interface 10(87):20130469

    Article  Google Scholar 

  • Schaefer HM, Ruxton GD (2011) Plant-animal communication. OUP Oxford, Oxford

    Book  Google Scholar 

  • Searcy WA, Nowicki S (2005) The evolution of animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton

    Google Scholar 

  • Summers K, Speed M, Blount J, Stuckert A (2015) Are aposematic signals honest? a review. J Evol Biol 28(9):1583– 1599

    Article  CAS  Google Scholar 

  • Számadó S (2011) The cost of honesty and the fallacy of the handicap principle. Anim Behav 81(1):3–10

    Article  Google Scholar 

  • Warren IA, Gotoh H, Dworkin IM, Emlen DJ, Lavine LC (2013) A general mechanism for conditional expression of exaggerated sexually-selected traits. Bioessays 35(10):889–899

    PubMed  Google Scholar 

  • Zahavi A (1975) Mate selection – a selection for a handicap. J Theor Biol 53(1):205–214

    Article  CAS  Google Scholar 

  • Zollman KJ, Bergstrom CT, Huttegger SM (2013) Between cheap and costly signals: the evolution of partially honest communication. Proc R Soc B 280(1750):20121878

    Article  Google Scholar 

Download references

Funding

SS was financially supported by the National Natural Science Foundation of China (31870357); MJ was supported by grant GAČR 16-07378S

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rychtář.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of the result for a Lipschitz function

Here, we show that for any Lipschitz function f : [0, 1] → (0, 1), there is a cost function t(s, q) satisfying Eqs. 13 such that the optimal signal strength for a sender of quality q is given by s(q) = f(q).

Let L be a Lipschitz constant of f, i.e., |f(x) − f(y)|≤ L|xy| for all x, y ∈ [0, 1]. Since f is continuous, it attains maximum and minimum and thus there is a ∈ (0, 1) such that af(q) ≤ 1 − a for each q ∈ [0, 1].

Let h: (0, 1] → (0, 1) be an increasing function satisfying \(\max \{q-\frac {a}{2L},\frac {q}{2}\}<h(q)<q\) for each q ∈ (0, 1]. For example, we can take a function

$$ h(q) = \frac12\left( q+\max\left\{q-\frac a{2L},\frac{q}{2}\right\}\right), $$
(10)

(see Fig. 3).

Fig. 3
figure 3

a Graph of f(q) = q2q + 0.6. We get \(L = \max _{q\in [0,1]} |f^{\prime }(q)| = \max _{q\in [0,1]}| 2q-1| = 1\) and since f(q) ∈ [0.35,0.6], we can set a = 0.35. b Graph of h(q) given by Eq. 10. c Graph of g(q) given by Eq. 11

Further, for q ∈ (0, 1], put

$$ g(q)=\frac{a}{2}\cdot\frac{h(q)(2-h(q))}{2(1-h(q))} $$
(11)

and note that g is increasing, since \(x\mapsto \frac {x(2-x)}{1-x}\) is increasing on (−, 1), see Fig. 3.

For each s, q ∈ [0, 1] we define two auxiliary functions

$$ \begin{array}{@{}rcl@{}} \alpha(s,q)&=&h(q)+\frac{q-h(q)}{f(q)-\frac{a}{2}}\left( s-\frac{a}{2}\right) \end{array} $$
(12)
$$ \begin{array}{@{}rcl@{}} &=&q+\frac{q-h(q)}{f(q)-\frac{a}{2}}\left( s-f(q)\right) \end{array} $$
(13)
$$ \begin{array}{@{}rcl@{}} \beta(s,q)&=&q+\frac{q-h(q)}{1-\frac{a}{2}-f(q)}\left( f(q)-s\right) \end{array} $$
(14)
$$ \begin{array}{@{}rcl@{}} &=&h(q)+\frac{q-h(q)}{1-\frac{a}{2}-f(q)}\left( 1-\frac{a}{2}-s\right) \end{array} $$
(15)

Note that α(s, q) is increasing in s and β(s, q) is decreasing in s. Both functions are affine in s. We will show further below that both functions are increasing in q.

Also, for each s ∈ [0, 1] and q ∈ (0, 1] we define a function u(s, q) in the following way:

$$ u(s,q)=\left\{\begin{array}{ll} \frac{2}{a}\left( s + g(q) - \sqrt{s^{2} + g(q)^{2}} \right)&\quad\text{for } s\in\left[0,\frac{a}{2}\right],\\ \alpha(s,q) &\quad\text{for } s\in\left[\frac{a}{2},f(q)\right],\\ \beta(s,q) &\quad\text{for } s\in\left[f(q),1 - \frac{a}{2}\right],\\ \frac{2h(q)}a(1 - s)&\quad\text{for } s\in\left[1 - \frac{a}{2},1\right]. \end{array}\right. $$
(16)

It is not too difficult to check that

$$ \begin{array}{@{}rcl@{}} &&\frac{2}{a}\left( \frac{a}{2}+g(q)-\sqrt{\left( \frac{a}{2}\right)^{2}+g(q)^{2}} \right)\\&=&h(q)=\alpha\left( \frac{a}{2},q\right) \end{array} $$
(17)
$$ \begin{array}{@{}rcl@{}} \alpha(f(q),q)&=&q=\beta\left( f(q),q\right) \end{array} $$
(18)
$$ \begin{array}{@{}rcl@{}} \beta\left( 1-\frac{a}{2},q\right) &=& h(q) = \frac{2h(q)}a\left( 1-\left( 1-\frac{a}{2}\right)\right) \end{array} $$
(19)

and so u is a properly defined function that is continuous in s (see Fig. 1) where the re-scaled function \(w = \frac {a}{2}u\) is shown.

Note that su(s, q) is affine on each of the intervals \([\frac {a}{2},f(q)]\), \([f(q),1-\frac {a}{2}]\), and \([1-\frac {a}{2},1]\), with \(u\left (\frac {a}{2}, q\right ) = h(q)\), u(f(q),q) = q, \(u(1-\frac {a}{2},q)=h(q)\), and u(1,q) = 0.

As a last step for each q ∈ (0, 1] we set

$$ \begin{array}{@{}rcl@{}} t(s,q)&=&\frac{a}{2}\frac{u(s,q)}s \text{ for } s\in(0,1] \text{ and} \end{array} $$
(20)
$$ \begin{array}{@{}rcl@{}} t(0,q)& =&\lim\limits_{s\to0+}t(s,q)=1. \end{array} $$
(21)

(see Fig. 1.)

Now, we will show that for each q ∈ (0, 1], the function su(s, q) attains it maximum at s = f(q). Fix q ∈ (0, 1]. It is easily seen that su(s, q) is increasing on \(\left [0,\frac {a}{2}\right ]\). As h(q) < q, it readily follows that su(s, q) is increasing on [0,f(q)] and decreasing on [f(q), 1], with attaining the maximum value of q at f(q).

Next, we show that for a fixed s ∈ (0, 1), the function qu(s, q) is increasing. For \(s\in (0,\frac {a}{2}]\) this follows from the fact that both \(x\mapsto s+x-\sqrt {s^{2}+x^{2}}\) and g are increasing. For \(s\in \left [1-\frac {a}{2},1\right )\) this is easily seen from the fact that h is increasing. It remains to deal with \(s\in \left (\frac {a}{2},1-\frac {a}{2}\right )\). First, notice that if we consider two affine functions γ1, γ2 on an interval [c, d], then γ1 < γ2 on [c, d] if and only if γ1(c) < γ2(c) and γ1(d) < γ2(d). Now, fix any q1,q2 ∈ (0, 1], q1 < q2. In the case that f(q2) ≥ f(q1), we have

$$ \alpha\left( \frac{a}{2},q_{1}\right)=h(q_{1})<h(q_{2})=\alpha\left( \frac{a}{2},q_{2}\right) $$
(22)

and

$$ \begin{array}{@{}rcl@{}} \alpha\left( f(q_{2}),q_{1}\right)&=&q_{1}+\frac{q_{1}-h(q_{1})}{f(q_{1})-\frac{a}{2}}\left( f(q_{2})-f(q_{1})\right) \end{array} $$
(23)
$$ \begin{array}{@{}rcl@{}} &\le& q_{1}+\frac{q_{1}-h(q_{1})}{\frac{a}{2}}\left( f(q_{2})-f(q_{1})\right) \end{array} $$
(24)
$$ \begin{array}{@{}rcl@{}} &\le& q_{1}+\frac{q_{1}-h(q_{1})}{\frac{a}{2}}L(q_{2}-q_{1}) \end{array} $$
(25)
$$ \begin{array}{@{}rcl@{}} &<&q_{2}=\alpha\left( f(q_{2}),q_{2}\right), \end{array} $$
(26)

where the last inequality follows from the properties of h. Hence, α(s, q1) < α(s, q2) whenever \(s\in \left [\frac {a}{2},f(q_{2})\right ]\). Also, β(s, q1) ≤ q1α(s, q1) whenever sf(q1) and so u(s, q1) < u(s, q2) whenever \(s\in [\frac {a}{2},f(q_{2})]\). On the other hand,

$$ \begin{array}{@{}rcl@{}} \beta(f(q_{2}),q_{1}) &\le& q_{1}<q_{2}=\beta(f(q_{2}),q_{2}), \text{ and} \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} \beta(1-\frac{a}{2},q_{1}) &=&h(q_{1})<h(q_{2})=\beta\left( 1-\frac{a}{2},q_{2}\right) \end{array} $$
(28)

and so u(s, q1) < u(s, q2) whenever \(s\in \left [f(q_{2}),1-\frac {a}{2}\right ]\). In the case f(q2) < f(q1), the reasoning is analogous.

It remains to check that the function t(s, q) satisfies the properties (1)–(3). Since u(1,q) = 0, we get that t(1,q) = 0. By Eq. 21, t(0,q) = 1 and thus Eq. 1 holds. Also, since the function qu(s, q) is increasing, t(s, q) satisfies Eq. 3. Finally, it is easily checked separately on each of the intervals \(\left [0,\frac {a}{2}\right ]\), \(\left [\frac {a}{2},f(q)\right ]\), \(\left [f(q),1-\frac {a}{2}\right ]\), and \([1-\frac {a}{2},1]\) that st(s, q) is decreasing. Indeed, note that \(s\mapsto \frac {ks+r}s\) is decreasing whenever r > 0. In our situation, this is always the case, since

$$ h(q)-\frac{a}{2}\frac{q-h(q)}{f(q)-\frac{a}{2}}\ge h(q)-(q-h(q))=2h(q)-q>0. $$
(29)

Consequently, t(s, q) satisfies Eq. 2.

We note that if we want our function to satisfy Eq. 1’ instead of Eq. 1, we need to replace \(\frac {2h(q)}a(1-s)\) in Eq. 16 by a linear equation L that satisfies L(1 − a/2) = h(q) and L(1) = tmin. Moreover, we can consider the function T(s, q) = t(s, q) ∗ tmax; the optima of w(s, q) = st(s, q) and W(s, q) = sT(s, q) are same and T(0,q) = tmax.

Appendix B: Proof of the result for decreasing function

Let \(d(q):[0,1]\to \left [\frac {1}{2}, \frac {3}{4}\right ]\) be a decreasing function. Define

$$ t_{d} (s,q)=\min \left\{1-\left( 2-\frac{1}{d(q)}\right)s,2(1-s)\right\} $$
(30)

We will show that the optimal signal strength s(q) for this cost function is given by d(q).

Since \(d(q)\geq \frac {1}{2}\), it follows from Eq. 30 that

$$ t_{d} (s,q)= \left\{\begin{array}{lll} 1-\left( 2-\frac{1}{d(q)}\right)s, &\text{if } s\leq d(q),\\ 2(1-s), &\text{if } s\geq d(q). \end{array}\right. $$
(31)

When we set wd(s, q) = std(s, q) and differentiate with respect to s, we get

$$ \frac{\partial w_{d}}{\partial s}= \left\{\begin{array}{lll} 1-\frac{4d(q)-2}{d(q)} s, & \text{ if } s< d(q),\\ (2-4s), & \text{ if }s> d(q). \end{array}\right. $$
(32)

Consequently,

$$ \frac{\partial w_{d}}{\partial s} \left\{\begin{array}{lll} >0, & \text{ for } s<\min\left\{d(q),\frac{d(q)}{4d(q)-2}\right\},\\ <0, & \text{ for } \frac{d(q)}{4d(q)-2} <s<d(q),\\ <0, & \text{ for } s>d(q)\geq \frac{1}{2}. \end{array}\right. $$
(33)

Since \(d(q)\leq \frac {d(q)}{4d(q)-2}\) if and only if \(d(q)\leq \frac {3}{4}\), we get that the optimal signal size, \(s_{d}^{*} (q)\), is given by

$$ s_{d}^{*} (q)= \left\{\begin{array}{lll} d(q), & \text{ if } d(q)\leq 3/4,\\ \frac{d(q)}{4d(q)-2}, & \text{ if } d(q)\geq \frac{3}{4}. \end{array}\right. $$
(34)

Thus, \( s_{d}^{*} (q) = d(q)\).

Appendix C: General condition on \(\frac {d}{dq}s^{*}(q)>0\)

For simplicity, we will assume that that the function t has continuous second derivatives. Because s(q) is such that w(s(q),q) is maximal, we have

$$ \frac{\partial}{\partial s} w(s^{*}(q),q) = 0 $$
(35)

Differentiating (35) with respect to q we get

$$ \begin{array}{@{}rcl@{}} 0 = \frac{d}{dq} \frac{\partial}{\partial s} w(s^{*}(q),q) &=&\frac{\partial^{2}}{\partial s^{2}} w(s^{*}(q),q) \cdot \frac{d}{dq} s^{*}(q)\\ &&+ \frac{\partial^{2}}{\partial s\partial q} w(s^{*}(q),q) \end{array} $$
(36)

If the function t is generic (Broom and Rychtář 2013, p. 21), we may assume that \(\frac {\partial ^{2}}{\partial s^{2}} w(s,q) \neq 0 \) when \( \frac {\partial }{\partial s} w(s,q) = 0\), and thus

$$ \frac{d}{dq} s^{*}(q) = - \frac{\frac{\partial^{2} w}{\partial s\partial q}} { \frac{\partial^{2} w}{\partial s^{2}}} (s^{*}(q),q) $$

Since the maximum is attained at s(q), we have \(\frac {\partial ^{2} w}{\partial s^{2}}(s^{*}(q),q)<0\). Consequently,

$$ \begin{array}{@{}rcl@{}} \frac{d}{dq} s^{*}(q) >0 && \text{ if and only if } \frac{\partial^{2} w}{\partial s\partial q} (s^{*}(q),q)>0 \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} && \text{ if and only if } \frac{\partial t}{\partial q} (s^{*}(q),q)\\ &&+ s^{*}(q) \frac{\partial^{2} t}{\partial s\partial q} (s^{*}(q),q)>0. \end{array} $$
(38)

We note that condition \(\frac {\partial ^{2} w}{\partial s\partial q} (s^{*}(q),q)>0\) depends on the function s(q). Nevertheless, since \(\frac {\partial }{\partial s} w(s^{*}(q),q) = 0\), the condition is satisfied if

$$ \frac{\partial^{2} w}{\partial s\partial q} (s,q) > - c \left| \frac{\partial}{\partial s} w(s,q) \right| $$
(39)

for some constant c and all s, q ∈ (0, 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Johanis, M. & Rychtář, J. Costly signalling theory and dishonest signalling. Theor Ecol 13, 85–92 (2020). https://doi.org/10.1007/s12080-019-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-019-0429-0

Keywords

Navigation