Skip to main content
Log in

Nonlinear models and bifurcation trees in quantum mechanics: a review of recent results

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this talk we discuss some recent results I obtained for a class of nonlinear models in quantum mechanics. In particular we focus our attention to the nonlinear one-dimensional Schrodinger equation with a periodic potential and a Stark-type perturbation. In the limit of large periodic potential the Stark–Wannier ladders of the linear equation become a dense energy spectrum because a cascade of bifurcations of stationary solutions occurs; for a detailed treatment we refer to Sacchetti (Phys Rev E 95:062212, 2017, SIAM J Math Anal 50(6):5783–5810, 2018) where this model has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adami, R., Sacchetti, A.: The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1. J. Phys. A Math. Gen. 38, 83798392 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Adami, R., Noja, D.: Stability and symmetry-breaking bifurcation for the ground states of a NLS with a \(\delta \)’ interaction. Commun. Math. Phys. 318, 247–289 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Adhikari, S.K., Malomed, S.P., Salasnich, L., Toigo, F.: Spontaneous symmetry breaking of Bose–Fermi mixtures in double-well potentials. Phys. Rev. A 81, 053630 (2010)

    Google Scholar 

  4. Albiez, M., Gati, R., Fölling, J., Hunsmann, S., Cristiani, M., Oberthaler, M.K.: Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Google Scholar 

  5. Alexander, T.J., Yan, D., Kevrekidis, P.G.: Complex mode dynamics of coupled wave oscillators. Phys. Rev. E 88, 062908 (2013)

    Google Scholar 

  6. Bambusi, D., Sacchetti, A.: Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential. Commun. Math. Phys. 275, 136 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bambusi, D., Sacchetti, A.: Stability of spectral eigenspaces in nonlinear Schrodinger equations. Dyn. PDE 4, 129–141 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Banica, V., Visciglia, N.: Scattering for NLS with a delta potential. J. Differ. Equ. 260, 4410–4439 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68, 1399–1482 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Bloch, I.: Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005)

    Google Scholar 

  11. Bloch, I.: Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 435, 1016 (2008)

    Google Scholar 

  12. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Google Scholar 

  13. Cambournac, C., Sylvestre, T., Maillotte, H., Vanderlinden, B., Kockaert, P., Emplit, P., Haelterman, M.: Symmetry-breaking instability of multimode vector solitons. Phys. Rev. Lett. 89, 083901 (2002)

    Google Scholar 

  14. Carles, R.: Semi-Classical Analysis for Nonlinear Schrodinger Equations. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Carlone, R., Figari, R., Negulescu, C.: The quantum beating and its numerical simulation. J. Math. Anal. Appl. 450, 1294–1316 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Cazenave, T.: Semilinear Schrodinger Equations. Courant Lecture Notes, AMS (2003)

    MATH  Google Scholar 

  17. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Google Scholar 

  18. Damanik, D., Ruzhansky, M., Vougalter, V., Wong, M.W., Adami, R., Noja, D.: Exactly solvable models and bifurcations: the case of the cubic NLS with a or a interaction in dimension one. Math. Modell. Nat. Phenom. 9, 1–16 (2014)

    MathSciNet  Google Scholar 

  19. Della Casa, F.F.G., Sacchetti, A.: Stationary states for non linear one-dimensional Schrodinger equations with singular potential. Physica D 219, 60–68 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Ferrari, G., Poli, N., Sorrentino, F., Tino, G.M.: Long-lived Bloch oscillations with Bosonic \(Sr\) atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006)

    Google Scholar 

  21. Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Rev. B 40, 546 (1989)

    Google Scholar 

  22. Fukuizumi, R., Sacchetti, A.: Bifurcation and stability for nonlinear Schrodinger equations with double well potential in the semiclassical limit. J. Stat. Phys. 145, 1546–1594 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Fukuizumi, R., Sacchetti, A.: Stationary states for nonlinear Schrodinger equations with periodic potentials. J. Stat. Phys. 156, 707–738 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Gerbier, F., Widera, A., Fölling, S., Mandel, O., Gericke, T., Bloch, I.: Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005)

    Google Scholar 

  25. Gerbier, F., Widera, A., Fölling, S., Mandel, O., Gericke, T., Bloch, I.: Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005)

    Google Scholar 

  26. Ginibre, J., Velo, G.: On a class of nonlinear Schrodinger equations. J. Fund. Anal. 32, 1–71 (1979)

    MATH  Google Scholar 

  27. Goodman, R.: Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes. J. Phys. A Math. Theor. 44, 425101 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Gross, E.P.: Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20, 454457 (1961)

    MathSciNet  Google Scholar 

  29. Hayata, K., Koshiba, M.: Self-localization and spontaneous symmetry breaking of optical fields propagating in strongly nonlinear channel waveguides: limitations of the scalar field approximation. J. Opt. Soc. Am. B 9, 1362 (1992)

    Google Scholar 

  30. Ianni, I., Le Coz, S., Royer, J.: On the Cauchy problem and the black solitons of a singularly perturbed Gross-Pitaevskii equation. SIAM J. Math. Anal. 49, 1060–1099 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Kirr, E., Kevrekidis, P.G., Pelinovsky, D.E.: Symmetry-breaking bifurcation in the nonlinear Schrodinger equation with symmetric potential. Commun. Math. Phys. 308, 795–844 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Pelinovsky, D.E., Schneider, G.: Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential. J. Differ. Equ. 248, 837–849 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrodinger Operators to the Gross-Pitaevskii Equation. Combridge UNiversity Press, Combridge (2011)

    MATH  Google Scholar 

  34. Pelinovsky, D.E., Phan, T.V.: Normal form for the symmetry-breaking bifurcation in the nonlinear Schrodinger equation. J. Differ. Equ. 253, 2796–2824 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451454 (1961)

    Google Scholar 

  36. Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tino, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011)

    Google Scholar 

  37. Presilla, C., Jona-Lasinio, G., Toninelli, C.: Classical versus quantum structures: the case of pyramidal molecules. In: Blanchard, P., DellAntonio, G. (eds.) Multiscale Methods in Quantum Mechanics: Theory and Experiment, p. 11927. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  38. Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S.R.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620 (1999)

    Google Scholar 

  39. Raizen, M., Salomon, C., Niu, Q.: New light on quantum transport. Phys. Today 50, 30 (1997)

    Google Scholar 

  40. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M., Tino, G.M.: Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (London) 510, 518 (2014)

    Google Scholar 

  41. Rosi, G., Cacciapuoti, L., Sorrentino, F., Menchetti, M., Prevedelli, M., Tino, G.M.: Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett. 114, 013001 (2015)

    Google Scholar 

  42. Saba, M., Pasquini, T.A., Sanner, C., Shin, Y., Ketterle, W., Pritcard, D.E.: Light scattering to determine the relative phase of two Bose–Einstein condensates. Science 307, 1945 (2005)

    Google Scholar 

  43. Sacchetti, A.: Nonlinear time-dependent Schrodinger equations: rhe Gross-Pitaevskii equation with double-well potential. J. Evolut. Equ. 4, 345–369 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Sacchetti, A.: Nonlinear double well Schrodinger equations in the semiclassical limit. J. Stat. Phys. 119, 1347–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Sacchetti, A.: Spectral splitting method for nonlinear Schrodinger equations with singular potential. J. Comput. Phys. 227, 1483–1499 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Sacchetti, A.: Universal critical power for nonlinear Schrodinger equations with a symmetric double well potential. Phys. Rev. Lett. 103, 194101 (2009)

    Google Scholar 

  47. Sacchetti, A.: Hysteresis effects in Bose–Einstein condensates. Phys. Rev. A 82, 013636 (2010)

    Google Scholar 

  48. Sacchetti, A.: Nonlinear Schrodinger equations with multiple-well potential. Physica D 241, 1815–1824 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Sacchetti, A.: Stationary solutions to the multi-dimensional Gross–Pitaevskii equation with double-well potential. Nonlinearity 27, 26432662 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Sacchetti, A.: First principle explanation of phase transition for Bose–Einstein condensates. Eur. Phys. J. B 87, 243–248 (2014)

    Google Scholar 

  51. Sacchetti, A.: Solution to the double-well nonlinear Schrodinger equation with Stark-type external field. J. Phys. A Math. Theor. 48, 035303 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Sacchetti, A.: Accelerated Bose-Einstein condensates in a double-well potential. Phys. Lett. A 380, 581–584 (2016)

    MATH  Google Scholar 

  53. Sacchetti, A.: Nonlinear Schrodinger equations with a multiple-well potential and a Stark-type perturbation. Physica D 321–322, 39–50 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Sacchetti, A.: Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice. Phys. Lett. A 381, 184–188 (2017)

    Google Scholar 

  55. Sacchetti, A.: Bifurcation trees of Stark-Wannier ladders for accelerated Bose-Einstein condensates in an optical lattice. Phys. Rev. E 95, 062212 (2017)

    Google Scholar 

  56. Sacchetti, A.: Nonlinear Stark–Wannier equation. SIAM J. Math. Anal. 50(6), 5783–5810 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Shin, Y., Saba, M., Pasquini, T.A., Ketterle, W., Pritchard, D.E., Leanhardt, A.E.: Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2004)

    Google Scholar 

  58. Spielman, I.B., Phillips, W.D., Porto, J.V.: Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition. Phys. Rev. Lett. 100, 120402 (2008)

    Google Scholar 

  59. Stöferle, T., Moritz, H., Schori, C., Köhl, M., Esslinger, T.: Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)

    Google Scholar 

  60. Sulem, C., Sulem, P.-L.: The Nonlinear Schrodinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

  61. Vardi, A., Anglin, J.R.: Bose-Einstein condensates beyond mean field theory: quantum backreaction as decoherence. Phys. Rev. Lett. 86, 568 (2001)

    Google Scholar 

  62. Witthaut, D., Rapedius, K., Korsch, H.J.: The nonlinear Schrodinger equation for the delta-comb potential: quasi-classical chaos and bifurcations of periodic stationary solutions. J. Nonlinear Math. Phys. 16, 207–233 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sacchetti.

Additional information

Communicated by Salvatore Rionero.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is partially supported by GNFM-INdAM. This paper is dedicated to Professor Tommaso Antonio Ruggeri on occasion of his 70th birthday and it is an extract of the talk given by the author at the Conference Wascom 2017 (Bologna) in honor to Professor Tommaso Antonio Ruggeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, A. Nonlinear models and bifurcation trees in quantum mechanics: a review of recent results. Ricerche mat 68, 883–898 (2019). https://doi.org/10.1007/s11587-019-00443-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-019-00443-1

Keywords

Mathematics Subject Classification

Navigation