Skip to main content
Log in

An experimental and theoretical analysis of floating wood diffusion coefficients

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Wood transport during high flow events is here treated as an advective–diffusive phenomenon. A theoretical definition of the governing equation is first provided, highlighting the dependence of floating wood diffusion on the adoption of adequate diffusion coefficients. To estimate these coefficients, an experimental investigation on large wood debris was carried out in a channel presenting a weakly sinusoidal plant, employing regular cylinders with various sizes under different flow conditions. For each configuration, a consistent number of trajectories for the floating wood were acquired and processed through imaging techniques, allowing for a statistical analysis of the wood dynamics. The tests showed that floating logs travel at a velocity lower than the water surface one, not completely aligned to the flow direction and tend to disperse streamwise and transversely. Under the assumption that wood dispersion can be derived from the analysis of wood trajectories fluctuations, the longitudinal, transversal and angular diffusion coefficients were computed. Finally, a preliminary dimensional analysis is presented discussing the relevant spatial and temporal scales for these coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alonso CV (2004) Transport mechanics of stream-borne logs. Riparian Veg Fluv Geomorphol 8:59

    Article  Google Scholar 

  2. Arnoux-Chiavassa S, Rey V, Fraunie P (1999) Modelling of suspended sediment fluxes off the Rhone river mouth. J Coast Res 15:61–73

    Google Scholar 

  3. Arya SP et al (1999) Air pollution meteorology and dispersion, vol 310. Oxford University Press, New York

    Google Scholar 

  4. Batchelor G, Binnie A, Phillips O (1955) The mean velocity of discrete particles in turbulent flow in a pipe. Proc Phys Soc Sect B 68(12):1095. https://doi.org/10.1088/0370-1301/68/12/314

    Article  Google Scholar 

  5. Beer T, Young PC (1983) Longitudinal dispersion in natural streams. J Environ Eng 109(5):1049–1067. https://doi.org/10.1061/(ASCE)0733-9372(1983)109:5(1049)

    Article  Google Scholar 

  6. Braudrick CA, Grant GE (2000) When do logs move in rivers? Water Resour Res 36(2):571–583. https://doi.org/10.1029/1999WR900290

    Article  Google Scholar 

  7. Braudrick CA, Grant GE (2001) Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology 41(4):263–283. https://doi.org/10.1016/S0169-555X(01)00058-7

    Article  Google Scholar 

  8. Brunner GW (2010) HEC–RAS River Analysis System–Hyrdaulic Reference Manual. U.S. Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Centre, Washington, DC

    Google Scholar 

  9. Comiti F, Andreoli A, Lenzi M, Mao L (2006) Spatial density and characteristics of woody debris in five mountain rivers of the dolomites (Italian alps). Geomorphology 78(1–2):44–63. https://doi.org/10.1016/j.geomorph.2006.01.021

    Article  Google Scholar 

  10. Comiti F, Mao L, Preciso E, Picco L, Marchi L, Borga M (2008) Large wood and flash floods: evidence from the 2007 event in the Davča basin (Slovenia). WIT Trans Eng Sci 60:173–182

    Article  Google Scholar 

  11. Comiti F, Lucía A, Rickenmann D (2016) Large wood recruitment and transport during large floods: a review. Geomorphology 269:23–39. https://doi.org/10.1016/j.geomorph.2016.06.016

    Article  Google Scholar 

  12. Corsini A, Ciccarese G, Diena M, Truffelli G, Alberoni P, Amorati R (2017) Debris flows in Val Parma and Val Baganza (northern Apennines) during the 12–13th October 2014 alluvial event in Parma province (Italy). Ital J Eng Geol Environ. https://doi.org/10.4408/IJEGE.2017-01.S-03

    Article  Google Scholar 

  13. Costabile P, Macchione F, Natale L, Petaccia G (2015) Comparison of scenarios with and without bridges and analysis of backwater effect in 1-d and 2-d river flood modeling. Comput Modell Eng Sci 109(2):181–204

    Google Scholar 

  14. Critchell K, Lambrechts J (2016) Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar Coast Shelf Sci 171:111–122. https://doi.org/10.1016/j.ecss.2016.01.036

    Article  Google Scholar 

  15. Critchell K, Grech A, Schlaefer J, Andutta F, Lambrechts J, Wolanski E, Hamann M (2015) Modelling the fate of marine debris along a complex shoreline: lessons from the great barrier reef. Estuar Coast Shelf Sci 167:414–426. https://doi.org/10.1016/j.ecss.2015.10.018

    Article  Google Scholar 

  16. D’Agostino V, Degetto M, Righetti M (2000) Experimental investigation on open check dam for coarse woody debris control. Dynamics of water and sediments in mountain basins. Quad Idronomia Mont 20:201–212. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001049

    Article  Google Scholar 

  17. Davidson S, MacKenzie L, Eaton B (2015) Large wood transport and jam formation in a series of flume experiments. Water Resour Res 51(12):10065–10077. https://doi.org/10.1002/2015WR017446

    Article  Google Scholar 

  18. DeCicco P, Solari L, Paris E (2015) Bridge clogging caused by woody debris: experimental analysis on the effect of pier shape. In: Proceedings of the third international conference of wood in world rivers. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000319

    Article  Google Scholar 

  19. Degetto M, Righetti M (2004) Dynamic of wood transport in torrents. In: Proceedings of the 10th International Congress INTERPRAEVENT, Riva del Garda, pp 24–27

  20. Division S (2000) Guideline for driftwood countermeasures (proposal and design). SC Sabo Department, Ed, Ministry of Construction, Japan, p 42

  21. Elder J (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5(4):544–560. https://doi.org/10.1017/S0022112059000374

    Article  Google Scholar 

  22. Fischer HB (1967) The mechanics of dispersion in natural streams. J Hydraul Div 93(6):187–216. https://doi.org/10.4236/jwarp.2010.211114

    Article  Google Scholar 

  23. Fischer HB (1969) The effect of bends on dispersion in streams. Water Resour Res 5(2):496–506. https://doi.org/10.1029/WR005i002p00496

    Article  Google Scholar 

  24. Fischer HB (1973) Longitudinal dispersion and turbulent mixing in open-channel flow. Annu Rev Fluid Mech 5(1):59–78. https://doi.org/10.1146/annurev.fl.05.010173.000423

    Article  Google Scholar 

  25. Furlan P, Pfister M, Matos J, Amado C, Schleiss AJ (2018) Experimental repetitions and blockage of large stems at ogee crested spillways with piers. J Hydraul Res. https://doi.org/10.1080/00221686.2018.1478897

    Article  Google Scholar 

  26. Goring DG, Nikora VI (2002) Despiking acoustic doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  27. Gschnitzer T, Gems B, Mazzorana B, Aufleger M (2017) Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology 279:128–140. https://doi.org/10.1016/j.geomorph.2016.11.002

    Article  Google Scholar 

  28. Gurnell A (2012) Fluvial geomorphology: wood and river landscapes. Nat Geosci 5(2):93. https://doi.org/10.1038/ngeo1382

    Article  Google Scholar 

  29. Hartlieb A (2015) Schwemmholz in Fließgewässern: Gefahren und Lösungsmöglichkeiten/von Arnd Hartlieb.[TUM, Technische Universität München, Lehrstuhl für Wasserbau und Wasserwirtschaft; Versuchsanstalt für Wasserbau und Wasserwirtschaft (Oskar-von-Miller-Institut)]. TUM, Lehrstuhl für Wasserbau und Wasserwirtschaft

  30. Kashefipour SM, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36(6):1596–1608. https://doi.org/10.1016/S0043-1354(01)00351-7

    Article  Google Scholar 

  31. Kimura I, Kitazono K (2018) Studies on driftwood motions around obstacles by laboratory and numerical experiments. In: E3S Web of Conferences, vol 40. https://doi.org/10.1051/e3sconf/20184002032

    Article  Google Scholar 

  32. Kramer N, Wohl E (2017) Rules of the road: a qualitative and quantitative synthesis of large wood transport through drainage networks. Geomorphology 279:74–97. https://doi.org/10.1016/j.geomorph.2016.08.026

    Article  Google Scholar 

  33. Lollino G, Arattano M, Rinaldi M, Giustolisi O, Marechal JC, Grant GE (2014) Engineering geology for society and territory-volume 3: river basins, reservoir sedimentation and water resources. Springer, Berlin

    Book  Google Scholar 

  34. Lucía A, Comiti F, Borga M, Cavalli M, Marchi L (2015) Dynamics of large wood during a flash flood in two mountain catchments. Nat Hazards Earth Syst Sci 15(8):1741. https://doi.org/10.5194/nhessd-3-1643-2015

    Article  Google Scholar 

  35. Marchi L, Borga M, Preciso E, Sangati M, Gaume E, Bain V, Delrieu G, Bonnifait L, Pogačnik N (2009) Comprehensive post-event survey of a flash flood in Western Slovenia: observation strategy and lessons learned. Hydrol Process Int J 23(26):3761–3770

    Google Scholar 

  36. Mazzorana B (2009) Woody debris recruitment prediction methods and transport analysis. Dissertation, Institute of Mountain Risk Engineering, University of Natural Resources and Applied Life Sciences, Vienna

  37. Mazzorana B, Comiti F, Volcan C, Scherer C (2011) Determining flood hazard patterns through a combined stochastic–deterministic approach. Nat Hazards 59(1):301–316. https://doi.org/10.1007/s11069-011-9755-2

    Article  Google Scholar 

  38. Mazzorana B, Formaggioni O, Macconi P, Marangoni N, Lucía A, Comiti F, Rigon E, Tonon A, Garcia Rama A, Ravazzolo D, Rainato R, Moretto J, Delai F (2015) Retracing wood dynamics during an extreme flood event in South Tyrol, Italy. In: Proceedings of the third international conference wood in world rivers, pp 92–95

  39. Morales-Hernández M, Murillo J, Garcıa-Navarro P (2018) Diffusion–dispersion numerical discretization for solute transport in transient shallow flows. Environ Fluid Mech. https://doi.org/10.1007/s10652-018-9644-2

    Article  Google Scholar 

  40. Nakagawa H (1994) Driftwood behavior by overland flood flows. J Hydrosci Hydraul Eng 12(2):31–39. https://doi.org/10.2208/prohe.37.379

    Article  Google Scholar 

  41. Nakagawa H, Inoue K, Ikeguchi M, Tsubono T (1995) Behavior of driftwood and the process of its damming up. J Hydrosci Hydraul Eng 13(2):55–67

    Google Scholar 

  42. Persi E, Petaccia G, Sibilla S (2018) Large wood transport modelling by a coupled Eulerian–Lagrangian approach. Nat Hazards 91(1):59–74. https://doi.org/10.1007/s11069-017-2891-6

    Article  Google Scholar 

  43. Persi E, Petaccia G, Sibilla S, Brufau P, García-Navarro P (2018) Calibration of a dynamic Eulerian–Lagrangian model for the computation of wood cylinders transport in shallow water flow. J Hydroinform. https://doi.org/10.2166/hydro.2018.085

    Article  Google Scholar 

  44. Pimpunchat B, Sweatman WL, Wake GC, Triampo W, Parshotam A (2009) A mathematical model for pollution in a river and its remediation by aeration. Appl Math Lett 22(3):304–308. https://doi.org/10.1016/j.aml.2008.03.026

    Article  Google Scholar 

  45. Piton G, Recking A (2016) Design of sediment traps with open check dams. II: woody debris. J Hydraul Eng 142(2):04015046. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001049

    Article  Google Scholar 

  46. Ratia H, Murillo J, García-Navarro P (2014) Numerical modelling of bridges in 2D shallow water flow simulations. Int J Numer Methods Fluids 75(4):250–272

    Article  Google Scholar 

  47. Ruiz-Villanueva V, Bodoque J, Díez-Herrero A, Eguibar M, Pardo-Igúzquiza E (2013) Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrol Process 27(24):3424–3437. https://doi.org/10.1002/hyp.9433

    Article  Google Scholar 

  48. Ruiz-Villanueva V, Bladé E, Sanchez-Juny M, Marti-Cardona B, Díez-Herrero A, Bodoque JM (2014) Two-dimensional numerical modeling of wood transport. J Hydroinform 16(5):1077–1096. https://doi.org/10.2166/hydro.2014.026

    Article  Google Scholar 

  49. Ruiz-Villanueva V, Piégay H, Gurnell AM, Marston RA, Stoffel M (2016) Recent advances quantifying the large wood dynamics in river basins: new methods and remaining challenges. Rev Geophys 54(3):611–652. https://doi.org/10.1002/2015RG000514

    Article  Google Scholar 

  50. Ruiz-Villanueva V, Wyzga B, Hajdukiewicz H, Stoffel M (2016) Exploring large wood retention and deposition in contrasting river morphologies linking numerical modelling and field observations. Earth Surface Process Landf 41(4):446–459. https://doi.org/10.1002/esp.3832

    Article  Google Scholar 

  51. Schmocker L, Hager WH (2011) Probability of drift blockage at bridge decks. J Hydraul Eng 137(4):470–479. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000319

    Article  Google Scholar 

  52. Schmocker L, Weitbrecht V (2013) Driftwood: risk analysis and engineering measures. J Hydraul Eng 139(7):683–695. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000728

    Article  Google Scholar 

  53. Shrestha BB, Nakagawa H, Kawaike K, Baba Y, Zhang H (2012) Driftwood deposition from debris flows at slit-check dams and fans. Nat Hazards 61(2):577–602. https://doi.org/10.1007/s11069-011-9939-9

    Article  Google Scholar 

  54. Silvestro F, Rebora N, Giannoni F, Cavallo A, Ferraris L (2016) The flash flood of the Bisagno Creek on 9th october 2014: an “unfortunate” combination of spatial and temporal scales. J Hydrol 541:50–62. https://doi.org/10.1016/j.jhydrol.2015.08.004

    Article  Google Scholar 

  55. Stockstill RL, Daly SF, Hopkins MA (2009) Modeling floating objects at river structures. J Hydraul Eng 135(5):403–414. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:5(403)

    Article  Google Scholar 

  56. Sullivan PJ (1971) Longitudinal dispersion within a two-dimensional turbulent shear flow. J Fluid Mech 49(3):551–576. https://doi.org/10.1017/S0022112071002258

    Article  Google Scholar 

  57. Syvitski JP, Skene KI, Nicholson MK, Morehead MD (1998) Plume1.1: deposition of sediment from a fluvial plume. Comput Geosci 24(2):159–171. https://doi.org/10.1016/S0098-3004(97)00084-8

    Article  Google Scholar 

  58. Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc Lond A 219(1137):186–203. https://doi.org/10.1098/rspa.1953.0139

    Article  Google Scholar 

  59. Vanderwel C, Tavoularis S (2014) Measurements of turbulent diffusion in uniformly sheared flow. J Fluid Mech 754:488–514. https://doi.org/10.1017/jfm.2014.406

    Article  Google Scholar 

  60. Vanzo D, Siviglia A, Toro EF (2016) Pollutant transport by shallow water equations on unstructured meshes: hyperbolization of the model and numerical solution via a novel flux splitting scheme. J Comput Phys 321:1–20. https://doi.org/10.1016/j.jcp.2016.05.023

    Article  Google Scholar 

  61. Wohl E, Cenderelli DA, Dwire KA, Ryan-Burkett SE, Young MK, Fausch KD (2010) Large in-stream wood studies: a call for common metrics. Earth Surf Process Landf J Br Geomorphol Res Group 35(5):618–625. https://doi.org/10.1002/esp.1966

    Article  Google Scholar 

  62. Yotsukura N, Sayre WW (1976) Transverse mixing in natural channels. Water Resour Res 12(4):695–704. https://doi.org/10.1029/WR012i004p00695

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EU and MIUR for funding, in the frame of the collaborative international consortium STEEP STREAMS financed under the ERA-NET Cofund WaterWorks2014 Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI). We are also grateful to the technicians of the Hydraulic Laboratory of the University of Trento Andrea Bampi, Lorenzo Forti, Fabio Sartori and Paolo Scarfiello for their support in the experimental investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Persi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 678 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meninno, S., Persi, E., Petaccia, G. et al. An experimental and theoretical analysis of floating wood diffusion coefficients. Environ Fluid Mech 20, 593–617 (2020). https://doi.org/10.1007/s10652-019-09693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-019-09693-x

Keywords

Navigation