Skip to main content

Advertisement

Log in

Role of Silicon and Salicylic Acid in the Mitigation of Nitrogen Deficiency Stress in Rice Plants

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Application of silicon (Si) and salicylic acid (SA) mitigates plant stress; however, this effect is not known under nitrogen (N) deficiency conditions in rice plants. The objective of the present study was to determine whether foliar application with a soluble form of Si and SA, individually or in combination, could mitigate N deficiency stress in rice plants. The treatments consisted of application of 3.45 g L−1 Si only (sprayed on the leaves), 4.5 mM SA only, a combination of both, and no application as control. Net CO2 assimilation rate, transpiration, lignin and carbon contents, C:N:P:Si stoichiometric ratio and grain yield were evaluated. Foliar application of Si combined with SA or isolated application of SA did not mitigate N deficiency stress in rice plants. However, silicon application increased rice yield by 18.6% in N-deficient conditions. Our results show that the beneficial effects of Si under nitrogen deficient conditions are related to the stoichiometry change in C with Si and increases of lignin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  2. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  3. Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300. https://doi.org/10.1007/s00344-007-9017-4

    Article  CAS  Google Scholar 

  4. Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture. From theory to practice. Springer, Dordrecht. https://doi.org/10.1007/978-3-319-58679-38

    Book  Google Scholar 

  5. Manivannan A, Soundararajan P, Muneer S, HO KO C, Jeong BR (2016) Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum‘Bugwang. Biomed Res Int 2016, Article ID:3076357. https://doi.org/10.1155/2016/3076357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6:22882. https://doi.org/10.1038/srep22882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. KosticL NN, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil:419, 447–455. https://doi.org/10.1007/s11104-017-3364-0

  8. Miao BH, Han XZ, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973. https://doi.org/10.1093/aob/mcq063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlovic J, Samardzic J, Kostic L, Laursen KH, Natic M, Timotijevic G, Schjoerring JK, Nikolic M (2016) Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. Ann Bot 118:271–280. https://doi.org/10.1093/aob/mcw105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pál M, Kovásc V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in Rice. J Agron Crop Sci 200:1–11. https://doi.org/10.1111/jac.12037

    Article  CAS  Google Scholar 

  11. Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol (6):685–694. https://doi.org/10.1016/j.jplph.2006.05.010

  12. Janda T, Gondor OK, Yordanova R, Szalai G, Pál M (2014) Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36:2537–2546. https://doi.org/10.1007/s11738-014-1620-y

    Article  CAS  Google Scholar 

  13. Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141. https://doi.org/10.1023/A:1022556103536

    Article  CAS  Google Scholar 

  14. Kong J, Dong Y, Xu L, Liu S, Bai X (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:9. https://doi.org/10.1186/1999-3110-55-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pascual MB, Echevarria V, Gonzalo MJ, Hernandez-Apaolaza L (2016) Silicon addition to soybean (Glycine max L.) plants alleviate zinc deficiency. Plant Physiol Biochem 108:132e138. https://doi.org/10.1016/j.plaphy.2016.07.008

    Article  CAS  Google Scholar 

  16. Deshmukh RK, Ma JF, Bélanger RR (2017) Editorial: role of silicon in plants. Front Plant Sci 8:1858. https://doi.org/10.3389/fpls.2017.01858

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicone addition: a meta-analysis. Funct Ecol 30:1340–1357. https://doi.org/10.1111/1365-2435.12713

    Article  Google Scholar 

  18. Yoshida S, Navasero SA, Ramirez EA (1969) Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31:48–56. https://doi.org/10.1007/BF01373025

    Article  CAS  Google Scholar 

  19. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (cd) toxicity in Cucumissativus L. Sci Hortic 123:521–530. https://doi.org/10.1016/j.scienta.2009.10.013

    Article  CAS  Google Scholar 

  20. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001

    Article  CAS  Google Scholar 

  21. Li P, Song A, Li Z, Fan F, Liang Y (2015) Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 397:289–301

    Article  CAS  Google Scholar 

  22. Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647. https://doi.org/10.1080/01904160600851494

    Article  CAS  Google Scholar 

  23. Agarie S, Uchida H, Agata W, Kubota F, Kaufman PT (1998) Effects of silicon on transpiration and leaf conductance in Rice plants (Oryza sativa L.). Plant Prot Sci 1:89–95. https://doi.org/10.1626/pps.1.89

    Article  Google Scholar 

  24. Liang Y, Miroslav N, Haijun G, Alin S (2015) Silicon and insect pest resistance. In: Yongchao L, Miroslav N, Richard B, Haijun G, Alin S (eds) Silicon in Agriculture. Springer, Berlin

    Chapter  Google Scholar 

  25. Pinilla A (1997) Estado actual de los estudios de fitólitos em suelos y planta. Centro de Ciencias Medio ambientales, Madrid

  26. Strömberg AE, Stilio VSD, Song Z (2016) Functions of phytoliths in vascular plants: an evolutionary perspective. Funct Ecol 30:1286–1297. https://doi.org/10.1111/1365-2435.12692

    Article  Google Scholar 

  27. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x

    Article  CAS  Google Scholar 

  28. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186:385–391. https://doi.org/10.1111/j.1469-8137.2009.03176.x

    Article  CAS  PubMed  Google Scholar 

  29. Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticumaestivum L.). Nature 7:40829. https://doi.org/10.1038/srep40829

    Article  CAS  Google Scholar 

  30. Schaller J, Brackhage C, Gessner MO, Bauker E, Gertdudel E (2012) Silicon supply modifies C:N:P stoichiometry and growth of Phragmitesaustralis. Plant Biol 14:392–396. https://doi.org/10.1111/j.1438-8677.2011.00537.x

    Article  CAS  PubMed  Google Scholar 

  31. Buck GB, Korndörfer GH, Nolla A, Coelho A (2008) Potassium silicate as foliar spray and Rice blast control. J Plant Nutr 31:231–237. https://doi.org/10.1080/01904160701853704

    Article  CAS  Google Scholar 

  32. Soratto RP, Crusciol CAC, Castro GSA, Costa CHM, Ferrari Neto J (2012) Leaf application of silicic acid to white oat and wheat. Rev Bras Ciênc Solo 36:1538–1544. https://doi.org/10.1590/S0100-06832012000500018

    Article  CAS  Google Scholar 

  33. Malavolta E (1981) Manual de química agrícola: Adubos e adubaçãoThird edn. Editora Agronômica Ceres, São Paulo

  34. Dionisio-Sese ML, Tobita S (1992) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135:1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  Google Scholar 

  35. Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Métodos de análise química de plantas. Instituto Agronômico, Campinas

    Google Scholar 

  36. Elliott CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. https://doi.org/10.1021/jf00006a024

    Article  CAS  Google Scholar 

  37. Korndörfer GH, Pereira HS, Nolla A (2004) Análise de silício no solo, planta e fertilizante. GPSi, Uberlândia

    Google Scholar 

  38. Silva DJ, Queiroz AC (2002) Análises de alimentos (métodos químicos e biológicos)third edn. Editora UFV, Viçosa

  39. Ferreira DF (2008) SISVAR: Um programa para análises e ensino de estatística. Revista Symposium 6:36–41

    Google Scholar 

  40. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355–365. https://doi.org/10.1080/01904160801894913

    Article  CAS  Google Scholar 

  41. Sarto MVM, Lana MC, Rampim L, Rosset JS, Inagaki AM, Bassegio D (2016) Effects of silicon (Si) fertilization on gas exchange and production in Brachiaria. Aust J Crop Sci 10:307–313. https://doi.org/10.21475/ajcs.2016.10.03.p6864

    Article  CAS  Google Scholar 

  42. Ribeiro VR, Silva L, Ramos RA, Andrade CA, Bachiega Z, Pereira SP (2011) High soil silicon concentrations inhibit coffee root growth without affecting leaf gas exchange. J Plant Nutr Rev Bras Ciênc Solo 35:939–948. https://doi.org/10.1590/S0100-06832011000300028

    Article  CAS  Google Scholar 

  43. Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134:324–333. https://doi.org/10.1111/j.1399-3054.2008.01140.x

    Article  CAS  PubMed  Google Scholar 

  44. Inanaga S, Okasaka A, Tanaka S (1995) Does silicon exist in association with organic compounds in rice plant? Soil Sci Plant Nutr 11:111–117. https://doi.org/10.1080/00380768.1995.10419564

    Article  Google Scholar 

  45. Suzuki S, Ma JF, Yamamoto N, Hattori T, Sakamoto M, Umeza WAT (2012) Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnol 29:391–394. https://doi.org/10.5511/plantbiotechnology.12.0416a

    Article  CAS  Google Scholar 

  46. Meschede DK, Velini ED, Carbonari CA, Moraes CP (2012) Teores de lignina e celulose em plantas de cana-de-açúcar em função da aplicação de maturadores. Planta Daninha 30:121–127. https://doi.org/10.1590/S0100-83582012000100014

    Article  Google Scholar 

  47. Gomes FB, Moraes JC, Santos CD, Antunes CS (2008) Uso de silício como indutor de resistência em batata a Myzuspersicae (Sulzer) (Hemiptera: Aphididae). Neotrop Entomol 37:185–190. https://doi.org/10.1590/S1519-566X2008000200013

    Article  CAS  PubMed  Google Scholar 

  48. Schurt DA, Rodrigues FA, Colodette JL, Carre-Missio V (2013) Efeito do silício nas concentrações de lignina e de açúcares em bainhas de folhas de arroz infectadas por Rhizoctoniasolani. Bragantia 72:360–366. https://doi.org/10.1590/brag.2013.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To the Coordination for the Improvement of Higher Education Personnel–CAPES, Brazil, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica Cristina Fernandes Deus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deus, A.C.F., de Mello Prado, R., de Cássia Félix Alvarez, R. et al. Role of Silicon and Salicylic Acid in the Mitigation of Nitrogen Deficiency Stress in Rice Plants. Silicon 12, 997–1005 (2020). https://doi.org/10.1007/s12633-019-00195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00195-5

Keywords

Navigation