Skip to main content
Log in

Free Vibrations of a Thin Elastic Orthotropic Cylindrical Panel with Free Еdges

  • Published:
Mechanics of Composite Materials Aims and scope

Using a system of equations corresponding to the classical theory of orthotropic cylindrical shells, the free vibrations of a thin elastic orthotropic cylindrical panel with free edges is investigated. To calculate its natural frequencies and to identify the respective vibration modes, the generalized Kantorovich–Vlasov method of reduction to ordinary differential equations is employed. To find the natural frequencies of possible types of vibrations, dispersion equations are derived. An asymptotic relation between the dispersion equations of the problem in hand and of an analogous problem for a rectangular plate with free sides is established. Determined is also a relation between the dispersion equations of the problem and of the boundary-value problem for a semi-infinite orthotropic nonclosed circular cylindrical shell with three free edges. With the example of an orthotropic cylindrical panel, the values of dimensionless characteristics of its natural frequencies are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Norris, “Flexural edge waves,” J. of Sound and Vibration, 171, No. 4, 571-573 (1994).

    Article  Google Scholar 

  2. M. V. Belubekyan and I. A. Engibaryan, “Waves localized along the free edge of a plate with cubic symmetry,” Izv. RAN, Mekh. Tverd. Tela, No. 6, 139-143 (1996)

  3. I. Thompson and I. D. Abrahams, “On the existence of flexural edge waves on thin orthotropic plates,” J. Acoustic. Soc. Amer., 112, No. 5, 1756-1765 (2002).

    Article  Google Scholar 

  4. J. D. Kaplunov, L. Y. Kossovich and M. V. Wilde, “Free localized vibrations of a semi-infinite cylindrical shell,” J. Acoustic. Soc. Amer., 107, No. 3, 1383-1393 (2000).

    Article  CAS  Google Scholar 

  5. J. D. Kaplunov, and M. V. Wilde, “Edge and interfacial vibrations in elastic shells of revolution” Zeitschrift für Angewandte Mathematik und Physik-ZAMP, 51, No. 4, 530-549 (2000).

    Article  Google Scholar 

  6. J. B. Lawrie and J. Kaplunov, “Edge waves and resonance on elastic structures: an overview,” Mathematics and Mechanics of Solids, 17, No. 1, 4-16 (2012).

    Article  Google Scholar 

  7. V. T. Grinchenko, “Wave motion localization effects in elastic waveguides,” Int. Appl. Mech., 41, No. 9, 988-994 (2005).

    Article  Google Scholar 

  8. M. V. Vilde, Yu. D. Kaplunov, and L. Yu. Kassovich, Boundary and Interface Resonant Phenomena in Elastic Bodies [in Russian], M., Fizmatlit (2010).

  9. G. I. Mikhasev and P. E. Tovstik, Localized Vibrations and Waves in Thin shells, Asymptotic Methods [in Russian], M., Fizmatlit (2009).

  10. A. L. Gol’denveizer, V. B. Lidskii, and P. E. Tovstik, Free Vibrations of Thin Elastic Shells [in Russian], M., Nauka, (1979).

  11. G. R. Ghulgazaryan and L. G. Ghulgazaryan, “On vibrations of a thin elastic orthotropic cylindrical shell with free edges,” Probl. Prochn. Plastichn., Iss. 68, 150-160 (2006).

  12. G. R. Ghulgazaryan, R. G. Ghulgazaryan, and A. A. Khachanyan, “Vibrations of an orthotropic cylindrical panel with various boundary conditions,” Int. Appl. Mech., 49, No. 5, 534-554 (2013).

  13. G. R. Ghulghazaryan., R. G. Ghulghazaryan, and Dg. L. Srapionyan, “Localized vibrations of a thin-walled structure consisted of orthotropic elastic non-closed cylindrical shells with free and rigid-clamped edge generators,” ZAMM. Z. Math. Mech., 93, No. 4, 269-283 (2013).

    Article  Google Scholar 

  14. G. R. Gulgazaryan, L. G. Gulgazaryan, and R. D. Saakyan, “The vibrations of a thin elastic orthotropic circular cylindrical shell with free and hinged edges,” J. Appl. Math. and Mech., 72, No. 3, 453-465 (2008).

    Article  Google Scholar 

  15. V. Z. Vlasov, “A new practical method for calculating folded coverings and shells,” Stroit. Prom, No. 11, 33-38 and No. 12, 21-26 (1932).

  16. L. V. Kantorovich, “A direct method for approximate solution of a problem on the minimum of a double integral,” Izv. AN SSSR, Otd. Mat. Estestv. Nauk, No. 5, - With. 647-653 (1933).

  17. V. G. Prokopov, E. I. Bespalov, and Yu. V. Sherenkovskii, “L. V. Kantorovich method of reduction to ordinary differential equations and a general method for solving multidimensional problems of heat transfer,” Inzh. Fiz. Zhurn., 42, No. 6, 1007-1013 (1982).

  18. E. I. Bespalov, “To the solution of stationary problems of the theory of gently sloped shells by the generalized Kantorovich– Vlasov method,” Prikl. Mekh., 44, No. 11, 99-111 (2008).

  19. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], M., Nauka, (1970).

  20. S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], M., Nauka, (1974).

  21. G. R. Gulgazaryan, “Vibrations of semi-infinite, orthotropic cylindrical shells of open profile,” Int. Appl. Mech., 40, No. 2, 199-212 (2004).

  22. G. R. Ghulghazaryan and V.B. Lidskii, “Density of free vibrations frequencies of a thin anisotropic shell with anisotropic layers,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 3, 171-174 (1982).

  23. G. R. Ghulghazaryan, “On free vibrations of a thin elastic orthotropic nonclosed cylindrical shell with free edges,” Proceedings of Internat. “Actual problems of mechanics of the continuous environment,” Yerevan, 2017, 77-78 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Ghulghazaryan.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 55, No. 5, pp. 813-836, September-October, 2019

Appendix

Appendix

Here, the analytical expressions for mij are presented:

$$ {\displaystyle \begin{array}{c}{m}_{11}=H{\chi}_1^4+{d}_1{\chi}_1^2+{d}_2,\kern0.36em {m}_{12}=H{\overline{\overline{f}}}_3+{d}_1{\overline{\overline{f}}}_1\kern0.36em {m}_{13}=H{\overline{f}}_2+{d}_1,{m}_{14}= Hf,\\ {}{m}_{21}=T{\chi}_1^5+{d}_3{\chi}_1^3+{d}_4{\chi}_1,{m}_{22}=T{\overline{\overline{f}}}_4+{d}_3{\overline{\overline{f}}}_2+{d}_4,{m}_{23}=T{\overline{f}}_3+{d}_3{\overline{f}}_1,{m}_{24}=T{f}_2+{d}_3,\\ {}{m}_{31}={\delta}_m{\chi}_1^6+{d}_5{\chi}_1^4+{d}_6{\chi}_1^2+{d}_7,{m}_{32}={\delta}_m{\overline{\overline{f}}}_5+{d}_5{\overline{\overline{f}}}_3+{d}_6{\overline{\overline{f}}}_1,\\ {}{m}_{33}={\delta}_m{\overline{f}}_4+{d}_5{\overline{f}}_2+{d}_6,{m}_{34}={\delta}_m{f}_3+{d}_5{f}_1,\\ {}{m}_{41}={\delta}_m{\chi}_1^7+{d}_8{\chi}_1^5+{d}_9{\chi}_1^3+{d}_{10}{\chi}_1,{m}_{42}={\delta}_m{\overline{\overline{f}}}_6+{d}_8{\overline{\overline{f}}}_4+{d}_9{\overline{\overline{f}}}_2+{d}_{10},\\ {}{m}_{43}={\delta}_m{\overline{f}}_5+{d}_8{\overline{f}}_3+{d}_9{\overline{f}}_1,{m}_{44}={\delta}_m{f}_4+{d}_8{f}_2+{d}_9,{\delta}_m=1+4{a}^2+{\varepsilon}_m^2,\\ {}{m}_{i5}={\left(-1\right)}^{i+1}{m}_{i1}\exp {z}_1,{m}_{i6}={\left(-1\right)}^{i+1}\left({m}_{i2}\exp {z}_2+{m}_{i1}\left[{z}_1{z}_2\right]\right),\\ {}{m}_{i7}={\left(-1\right)}^{i+1}\left({m}_{i3} ep{z}_3+{m}_{i2}\left[{z}_2{z}_3\right]+{m}_{i1}\left[{z}_1{z}_2{z}_3\right]\right),\\ {}{m}_{i8}={\left(-1\right)}^{i+1}\left({m}_{i4}\exp {z}_4+{m}_{i3}\left[{z}_3{z}_4\right]+{m}_{i2}\left[{z}_2{z}_3{z}_4\right]+{m}_{i1}\left[{z}_1{z}_2{z}_3{z}_4\right]\right),i=\overline{1,4,}\end{array}} $$

where

$$ {\displaystyle \begin{array}{c}H=-{a}^2\frac{B_{12}+4{B}_{66}}{B_{66}}{\beta}_m^{\hbox{'}},\kern0.6em T=-\frac{B_{12}}{B_{66}}{a}^2{\delta}_m{\beta}_m^{\hbox{'}},\kern0.48em {\delta}_m=1+4{a}^2{\varepsilon}_m^2,\\ {}{d}_1=\frac{B_{11}{B}_{22}-{B}_{12}^2}{B_{11}^2}{\beta}_m^{\hbox{'}}-\frac{B_{12}{B}_{66}}{B_{11}^2}{\eta}_{1m}^2+4{a}^2{\varepsilon}_m^2\frac{B_{12}{B}_{66}}{B_{11}^2}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\\ {}+{a}^2{\beta}_m^{\hbox{'}}\left[\frac{B_{12}}{B_{11}}{\beta}_m^{\hbox{'}\hbox{'}}-\frac{B_{12}\left({B}_{12}+4{B}_{66}\right)}{B_{11}^2}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\right],\\ {}{d}_2=-\frac{B_{12}}{B_{11}^2}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\left({B}_{66}{\eta}_{2m}^2+{B}_{22}\left({\beta}_m^{\hbox{'}}-{\beta}_m^{\hbox{'}\hbox{'}}\right)+{a}^2{\beta}_m^{\hbox{'}\hbox{'}}{B}_{22}\left({\beta}_m^{\hbox{'}}-{\varepsilon}_m^2\right)\right),\\ {}{d}_3=\frac{B_{11}{B}_{22}-{B}_{12}^2}{B_{11}^2}{\delta}_m{\beta}_m^{\hbox{'}}+{a}^2{\beta}_m^{\hbox{'}}\left(4{\eta}_{2m}^2-3{B}_2-2\frac{B_{12}}{B_{11}}{\beta}_m^{\hbox{'}}-\frac{B_{12}}{B_{11}}{\eta}_{1m}^2\right)+4{a}^4{\varepsilon}_m^2\left[\frac{B_{12}}{B_{11}}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\right],\\ {}{d}_4=\left(\frac{B_{12}}{B_{11}}{\eta}_{1m}^2+\frac{B_{12}}{B_{11}}{\eta}_{2m}^2\right)\kern0.24em {\beta}_m^{\hbox{'}}+{a}^2{\beta}_m^{\hbox{'}}\left[\frac{B_{12}\left({B}_{12}+4{B}_{66}\right)}{B_{11}{B}_{66}}{\beta}_m^{\hbox{'}}{\beta}_m^{\hbox{'}\hbox{'}}-3\frac{B_{12}}{B_{11}}{\beta}_m^{\hbox{'}\hbox{'}}-4\frac{B_{66}}{B_{11}}{\eta}_{2m}^2\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\right]\\ {}-{a}^2{\varepsilon}_m^2{\beta}_m^{\hbox{'}}\frac{B_{12}}{B_{11}}\left(\frac{\left({B}_{12}{\beta}^{\hbox{'}\hbox{'}}+4a{B}_{66}{\beta}_m^{\hbox{'}}\right)}{B_{66}}-4{\eta}_{1m}^2\right)+\frac{B_{12}{B}_{22}}{B_{11}{B}_{66}}{\beta}_m^{\hbox{'}}\left({\beta}_m^{\hbox{'}}-{\beta}_m^{\hbox{'}\hbox{'}}\right),\\ {}{d}_5=\frac{B_{66}}{B_{11}}{\eta}_{1m}^2+{\eta}_{2m}^2-\frac{B_{11}{B}_{22}{\beta}_m^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}-{B}_{12}{B}_{66}{\beta}_m^{\hbox{'}}}{B_{11}{B}_{66}}\\ {}-{a}^2{\varepsilon}_m^2\left[\frac{B_{11}{B}_{22}{\beta}_m^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}}{B_{11}{B}_{66}}+\frac{4{B}_{66}}{B_{11}}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\right],\\ {}{d}_6=\frac{B_{12}}{B_{11}}{B}_2+\frac{B_{22}}{B_{11}}{\beta}_m^{\hbox{'}}{\beta}_m^{\hbox{'}\hbox{'}}-\left(\frac{B_{11}{B}_{22}{\beta}^{\hbox{'}\hbox{'}}+{B}_{12}{B}_{66}{\beta}_m^{\hbox{'}}}{B_{11}^2}{\eta}_{1m}^2+\frac{B_{12}{B}_{66}}{B_{11}}{\beta}_m^{\hbox{'}}{\eta}_{2m}^2\right)\\ {}+\frac{B_{66}}{B_{11}}{\eta}_{1m}^2{\eta}_{2m}^2+{\varepsilon}_m^2\left[{a}^2\frac{{}_{11}{B}_{22}{\beta}^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}}{B_{12}^2}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)-\frac{B_{12}}{B_{11}}{B}_1{\beta}_m^{\hbox{'}}\right],\\ {}{d}_7=\frac{B_{12}}{B_{11}}{\beta}_m^{\hbox{'}}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\left(\frac{B_{22}}{B_{11}}{\varepsilon}_m^2-\frac{B_{22}}{B_{11}}{\beta}_m^{\hbox{'}\hbox{'}}+\frac{B_{66}}{B_{11}}{\eta}_{2m}^2\right),\\ {}{d}_8=\frac{B_{66}}{B_{11}}{\eta}_{1m}^2+{\eta}_{2m}^2-\frac{B_{11}{B}_{22}{\beta}_m^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}-{B}_{12}{B}_{66}{\beta}_m^{\hbox{'}}+4{B}_{66}^2{\beta}_m^{\hbox{'}}}{B_{11}{B}_{66}}\\ {}-{a}^2{\varepsilon}_m^2\left({B}_2+\frac{4{B}_{66}-2{B}_{12}}{B_{11}}{\beta}_m^{\hbox{'}}-\frac{4{B}_{66}}{B_{11}}{\eta}_{1m}^2\right),\\ {}{d}_9=\frac{B_{66}}{B_{11}}{\eta}_{1m}^2{\eta}_{2m}^2-\frac{B_{11}{B}_{22}{\beta}_m^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}-{B}_{12}{B}_{66}{\beta}_m^{\hbox{'}}+4{B}_{66}^2{\beta}_m^{\hbox{'}}}{B_{11}{B}_{66}}{\eta}_{1m}^2\\ {}+\frac{B_{12}5{B}_{66}}{B_{11}}{\beta}_m^{\hbox{'}}{\eta}_{2m}^2+\frac{\left({B}_{12}+4{B}_{66}\right)}{B_{11}}{B}_2{\beta}_m^{\hbox{'}}+\frac{B_{22}}{B_{11}}{\beta}_m^{\hbox{'}}{\beta}_m^{\hbox{'}\hbox{'}}\\ {}+{\varepsilon}_m^2\left[{a}^2\frac{B_{11}{B}_{22}{\beta}_m^{\hbox{'}\hbox{'}}-{B}_{12}^2{\beta}_m^{\hbox{'}}-4{B}_{12}{B}_{66}{\beta}_m^{\hbox{'}}}{B_{12}^2}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)-\frac{\left({B}_{12}+4{B}_{66}\right)}{B_{11}}{B}_1{\beta}_m^{\hbox{'}}\right],\\ {}{d}_{10}=\frac{B_{12}+4{B}_{66}}{B_{11}}{\beta}_m^{\hbox{'}}\left({\beta}_m^{\hbox{'}}-{\eta}_{1m}^2\right)\left(\frac{B_{22}}{B_{11}}{\varepsilon}_m^2-\frac{B_{22}}{B_{11}}{\beta}_m^{\hbox{'}\hbox{'}}+\frac{B_{66}}{B_{11}}{\eta}_{2m}^2\right).\end{array}} $$

This research was performed at a partial support of the Erasmus + ICM program within the framework of cooperation with Keele University, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghulghazaryan, G.R., Ghulghazaryan, L.G. & Kudish, I.I. Free Vibrations of a Thin Elastic Orthotropic Cylindrical Panel with Free Еdges. Mech Compos Mater 55, 557–574 (2019). https://doi.org/10.1007/s11029-019-09834-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-019-09834-9

Keywords

Navigation