Skip to main content

Advertisement

Log in

Application of Chromium and Cobalt Terephthalate Metal Organic Frameworks as Catalysts for the Production of Biodiesel from Calophyllum inophyllum Oil in High Yield Under Mild Conditions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This paper describes the application of chromium(III) terephthalate (Cr-Tp) and cobalt(II) terephthalate (Co-Tp) metal organic frameworks, as heterogeneous acid catalysts to avoid the yield reduction caused by saponification during the process of biodiesel production using Calophyllum inophyllum oil. The catalysts were mainly characterized using spectroscopic (FTIR), microscopic (SEM, energy-dispersive X-ray spectroscopy) and X-ray diffractive techniques. The surface acidity and the thermal stability of the catalysts were determined using Hammett indicator and thermo-gravimetric methods, respectively. The catalysts were employed for the pre-esterification of free fatty acid content of the oil before subjecting the oil for the transesterification of its triglyceraldehyde content. The pre-esterification was performed through a couple of successive catalytic cycles under milder conditions [25°, 1 atm, and 2/1 MeOH/oil (w/w) ratio] than the conditions reported so far. The study revealed that the successful pre-esterification required these catalysts in very small amount (< 2.5% by oil weight) and occurred within very short time (2 h for the 1st cycle and 2–4 h for the 2nd cycle), reducing the acid value of C. inophyllum oil significantly (88%) from 56.91 to ~ 6.5 mg KOH g−1. The catalytic activity of these catalysts remained unchanged even after the 10th cycle of catalyst reuse. More importantly, the yield of biodiesel obtained from C. inophyllum oil in this way was significantly high (~ 93%) and free from saponification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Adapted from [19, 52]

Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. International Energy Agency, Key World Energy Statistics, 2016. https://doi.org/10.1787/key_energ_stat-2016-en

  2. EIA, Annual Energy Outlook 2016 (Office of Integrated International Energy Analysis, 2015)

  3. S.H. Mohr, J. Wang, G. Ellem, J. Ward, D. Giurco, Projection of world fossil fuels by country. Fuel 141, 120–135 (2015). https://doi.org/10.1016/j.fuel.2014.10.030

    Article  CAS  Google Scholar 

  4. C. Pathak, H.C. Mandalia, Petroleum industries: environmental pollution effects, management and treatment methods. Int. J. Sep. Environ. Sci. 1, 55–62 (2012)

    Google Scholar 

  5. The Hidden Cost of Fossil Fuels (Union of Concerned Scientists, n.d.). http://www.ucsusa.org/clean_energy/our-energy-choices/coal-and-other-fossil-fuels/the-hidden-cost-of-fossil.html. Accessed 18 April 2016

  6. E.M. Galán, T. Foley, L. Junfeng, Renewables 2015 Global Status Report (2015)

  7. M. Balat, H. Balat, A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manag. 49, 2727–2741 (2008). https://doi.org/10.1016/j.enconman.2008.03.016

    Article  CAS  Google Scholar 

  8. Y. Zhang, M.A. Dubé, D.D. McLean, M. Kates, Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 90, 229–240 (2003). https://doi.org/10.1016/s0960-8524(03)00150-0

    Article  CAS  PubMed  Google Scholar 

  9. M. Borhanipour, P. Karin, M.T. Chollacoop, N. Chollacoop, K. Hanamura, Comparison Study on Fuel Properties of Biodiesel from Jatropha, Palm and Petroleum Based Diesel Fuel (SAE International, 2014). https://doi.org/10.4271/2014-01-2017

  10. A.E. Atabani, A.D.S. César, Calophyllum inophyllum L.—a prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew. Sustain. Energy Rev. 37, 644–655 (2014). https://doi.org/10.1016/j.rser.2014.05.037

    Article  CAS  Google Scholar 

  11. R. Sawangkeaw, S. Ngamprasertsith, A review of lipid-based biomasses as feedstocks for biofuels production. Renew. Sustain. Energy Rev. 25, 97–108 (2013). https://doi.org/10.1016/j.rser.2013.04.007

    Article  CAS  Google Scholar 

  12. Y. Zhang, Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89, 1–16 (2003). https://doi.org/10.1016/s0960-8524(03)00040-3

    Article  CAS  PubMed  Google Scholar 

  13. J. McMurry, Organic Chemistry, 5th edn. (Brooks/Cole, Belmont, 2000)

    Google Scholar 

  14. T.H. Lowry, K.S. Richardson, Mechanism and Theory in Organic Chemistry (1976). https://doi.org/10.1021/ed066pa131.2

  15. M.E. Borges, L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012). https://doi.org/10.1016/j.rser.2012.01.071

    Article  CAS  Google Scholar 

  16. J. Zhang, L. Jiang, Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresour. Technol. 99, 8995–8998 (2008). https://doi.org/10.1016/j.biortech.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  17. T.M.M. Marso, C.S. Kalpage, M.Y. Udugala-Ganehenege, Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil. Fuel 199, 47–64 (2017)

    Article  CAS  Google Scholar 

  18. G.F. Silva, F.L. Camargo, A.L.O. Ferreira, Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process. Technol. 92, 407–413 (2011). https://doi.org/10.1016/j.fuproc.2010.10.002

    Article  CAS  Google Scholar 

  19. Y.M. Sani, W.M.A.W. Daud, A.R. Abdul Aziz, Activity of solid acid catalysts for biodiesel production: a critical review. Appl. Catal. A 470, 140–161 (2014). https://doi.org/10.1016/j.apcata.2013.10.052

    Article  CAS  Google Scholar 

  20. A. Casas, M.J. Ramos, J.F. Rodríguez, Á. Pérez, Tin compounds as Lewis acid catalysts for esterification and transesterification of acid vegetable oils. Fuel Process. Technol. 106, 321–325 (2013). https://doi.org/10.1016/j.fuproc.2012.08.015

    Article  CAS  Google Scholar 

  21. S.K. Mandal, H.W. Roesky, Designing molecular catalysts with enhanced Lewis acidity. Adv. Catal. 54, 1–61 (2011). https://doi.org/10.1016/b978-0-12-387772-7.00001-0

    Article  CAS  Google Scholar 

  22. B. Peng-Lim, S. Ganesan, G.P. Maniam, M. Khairuddean, J. Efendi, A new heterogeneous acid catalyst for esterification: optimization using response surface methodology. Energy Convers. Manag. 65, 392–396 (2013). https://doi.org/10.1016/j.enconman.2012.08.002

    Article  CAS  Google Scholar 

  23. B. Peng-Lim, S. Ganesan, G. Pragas, M. Khairuddean, Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system. Energy 46, 132–139 (2012). https://doi.org/10.1016/j.energy.2012.09.013

    Article  CAS  Google Scholar 

  24. H.R. Ong, M.R. Khan, M.N.K. Chowdhury, A. Yousuf, C.K. Cheng, Synthesis and characterization of CuO/C catalyst for the esterification of free fatty acid in rubber seed oil. Fuel 120, 195–201 (2014). https://doi.org/10.1016/j.fuel.2013.12.015

    Article  CAS  Google Scholar 

  25. M. Zabeti, W.M.A. Wan Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770–777 (2009). https://doi.org/10.1016/j.fuproc.2009.03.010

    Article  CAS  Google Scholar 

  26. S. Horike, M. Dincǎ, K. Tamaki, J.R. Long, Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 130, 5854–5855 (2008). https://doi.org/10.1021/ja800669j

    Article  CAS  PubMed  Google Scholar 

  27. K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73, 81–88 (2004). https://doi.org/10.1016/j.micromeso.2003.12.027

    Article  CAS  Google Scholar 

  28. M. Vandichel, F. Vermoortele, S. Cottenie, D.E. De Vos, M. Waroquier, V. Van Speybroeck, Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization. J. Catal. 305, 118–129 (2013). https://doi.org/10.1016/j.jcat.2013.04.017

    Article  CAS  Google Scholar 

  29. Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008). https://doi.org/10.1002/anie.200705998

    Article  CAS  Google Scholar 

  30. M. Hartmann, M. Fischer, Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 164, 38–43 (2012). https://doi.org/10.1016/j.micromeso.2012.06.044

    Article  CAS  Google Scholar 

  31. N.V. Maksimchuk, M.N. Timofeeva, M.S. Melgunov, A.N. Shmakov, Y.A. Chesalov, D.N. Dybtsev, V.P. Fedin, O.A. Kholdeeva, Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 257, 315–323 (2008). https://doi.org/10.1016/j.jcat.2008.05.014

    Article  CAS  Google Scholar 

  32. N.V. Maksimchuk, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Heterogeneous selective oxidation of alkenes to α, β-unsaturated ketones over coordination polymer MIL-101. Adv. Synth. Catal. 352, 2943–2948 (2010). https://doi.org/10.1002/adsc.201000516

    Article  CAS  Google Scholar 

  33. Y. Zhou, J. Song, S. Liang, S. Hu, H. Liu, T. Jiang, B. Han, Metal-organic frameworks as an acid catalyst for the synthesis of ethyl methyl carbonate via transesterification. J. Mol. Catal. A 308, 68–72 (2009). https://doi.org/10.1016/j.molcata.2009.03.027

    Article  CAS  Google Scholar 

  34. F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: synthesis of biodiesel and other compounds of interest. Catal. Today 257, 213–220 (2015). https://doi.org/10.1016/j.cattod.2014.08.015

    Article  CAS  Google Scholar 

  35. Y. Zang, J. Shi, X. Zhao, L. Kong, F. Zhang, Y. Zhong, Highly stable chromium(III) terephthalate metal organic framework (MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a water-tolerant solid catalyst for hydrolysis and esterification. React. Kinet. Mech. Catal. 109, 77–89 (2013). https://doi.org/10.1007/s11144-013-0547-4

    Article  CAS  Google Scholar 

  36. X. Deng, Z. Fang, Y.H. Liu, C.L. Yu, Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36, 777–784 (2011). https://doi.org/10.1016/j.energy.2010.12.043

    Article  CAS  Google Scholar 

  37. H. Benesi, Acidity of catalyst surfaces. 1. Acid strength from colors of adsorbed indicators. J. Am. Chem. Soc. 78, 5490–5494 (1956). https://doi.org/10.1021/ja01602a008

    Article  CAS  Google Scholar 

  38. ASTM International, ASTM D974-06 Standard Test Method for Acid and Base Number by Color-Indicator Titration (ASTM, 2006). https://doi.org/10.1520/d0974-14e01

  39. S.R. Gadagkar, G.B. Call, Computational tools for fitting the Hill equation to dose–response curves. J. Pharmacol. Toxicol. Methods 71, 68–76 (2015). https://doi.org/10.1016/j.vascn.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  40. R. Elvas-Leitão, L. Moreira, F. Martins, Design of an Excel spreadsheet to estimate rate constants, determine associated errors, and choose curve’s extent. J. Chem. Educ. 83, 1879 (2006). https://doi.org/10.1021/ed083p1879

    Article  Google Scholar 

  41. H.L. Anderson, A. Kemmler, R. Strey, Comparison of different non-linear evaluation methods in thermal analysis. Thermochim. Acta 271, 23–29 (1996)

    Article  CAS  Google Scholar 

  42. A.D. Ferrão-Gonzales, I.C. Véras, F.A.L. Silva, H.M. Alvarez, V.H. Moreau, Thermodynamic analysis of the kinetics reactions of the production of FAME and FAEE using Novozyme 435 as catalyst. Fuel Process. Technol. 92, 1007–1011 (2011). https://doi.org/10.1016/j.fuproc.2010.12.023

    Article  CAS  Google Scholar 

  43. C.S. Kalpage, T.M.M.K. Ranathunga, Biodiesel; oil expelling and processing, in: Proceedings of SAARC Regional Training Workshop. BIOFUELS, 2008, p. 52. https://doi.org/10.1017/cbo9781107415324.004

  44. R. Da Tech, Bubble Washing Biodiesel (2016). http://www.make-biodiesel.org/Water-Washing/water-washing-bio.html. Accessed 6 March 2016.

  45. FAME Mix, C4–C24 (Sigma Aldrich, 2016). http://www.sigmaaldrich.com/catalog/product/supelco/189191amp?lang=en&region=LK. Accessed 6 March 2016

  46. S. Wang, L. Bromberg, H. Schreuder-Gibson, T.A. Hatton, Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N, N-dimethylaminopyridine and related aminopyridines. ACS Appl. Mater. Interfaces 5, 1269–1278 (2013)

    Article  CAS  Google Scholar 

  47. G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005). https://doi.org/10.1126/science.1116275

    Article  CAS  PubMed  Google Scholar 

  48. M. Kurmoo, H. Kumagai, M.A. Green, B.W. Lovett, S.J. Blundell, A. Ardavan, J. Singleton, Two modifications of layered cobaltous terephthalate: crystal structures and magnetic properties. J. Solid State Chem. 159, 343–351 (2001). https://doi.org/10.1006/jssc.2001.9163

    Article  CAS  Google Scholar 

  49. N. Guillou, C. Livage, G. Férey, Cobalt and nickel oxide architectures in metal carboxylate frameworks: from coordination polymers to 3D inorganic skeletons. Eur. J. Inorg. Chem. (2006). https://doi.org/10.1002/ejic.200600663

    Article  Google Scholar 

  50. S.S. Vieira, Z.M. Magriotis, N.A.V. Santos, A.A. Saczk, C.E. Hori, P.A. Arroyo, Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour. Technol. 133, 248–255 (2013). https://doi.org/10.1016/j.biortech.2013.01.107

    Article  CAS  PubMed  Google Scholar 

  51. M.E. Davis, R.J. Davis, Fundamentals of Chemical Reaction Engineering, 1st edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

  52. K.A. Kovalenko, A.M. Cheplakova, P.V. Burlak, V.P. Fedin, Coordination modification and sorption properties of mesoporous chromium(III) terephthalate. Russ. J. Inorg. Chem. 60, 873–877 (2015). https://doi.org/10.1134/s0036023615070086

    Article  Google Scholar 

  53. A.B. Ferreira, A. Lemos Cardoso, M.J. da Silva, Tin-catalyzed esterification and transesterification reactions: a review. ISRN Renew. Energy (2012). https://doi.org/10.5402/2012/142857

    Article  Google Scholar 

  54. M. Berrios, J. Siles, M.A. Martın, A. Martın, A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86, 2383–2388 (2007). https://doi.org/10.1016/j.fuel.2007.02.002

    Article  CAS  Google Scholar 

  55. S. Pasias, N. Barakos, C. Alexopoulos, N. Papayannakos, Heterogeneously catalyzed esterification of FFAs in vegetable oils. Chem. Eng. Technol. 29, 1365–1371 (2006). https://doi.org/10.1002/ceat.200600109

    Article  CAS  Google Scholar 

  56. A.S. Yusuff, O.D. Adeniyi, S.O. Azeez, M.A. Olutoye, U.G. Akpan, Synthesis and characterization of anthill-eggshell-Ni–Co mixed oxides composite catalyst for biodiesel production from waste frying oil. Biofuels Bioprod. Biorefin. 13, 37–47 (2019). https://doi.org/10.1002/bbb.1914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Research Council of Sri Lanka under the Research Grant number (13-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Udugala-Ganehenege.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marso, T.M.M., Kalpage, C.S. & Udugala-Ganehenege, M.Y. Application of Chromium and Cobalt Terephthalate Metal Organic Frameworks as Catalysts for the Production of Biodiesel from Calophyllum inophyllum Oil in High Yield Under Mild Conditions. J Inorg Organomet Polym 30, 1243–1265 (2020). https://doi.org/10.1007/s10904-019-01251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01251-8

Keywords

Navigation