Skip to main content
Log in

Micellar Catalysis Strategy of Cross-Condensation Reaction: The Effect of Polar Heads on the Catalytic Properties of Aminoalcohol-Based Surfactants

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of the polar head and the concentration of quaternary ammonium surfactants (C14EtOH, C14iPrOH, C14PrOH, where, 14 = carbon number iPrOH = iso-propanol, EtOH = ethanol, PrOH = propanol) in micellar catalysis for the cross-condensation reaction (Claisen–Schmidt) was investigated. The reaction in the Micellar-NaOH system with different concentrations of surfactants above the critical micelle concentration from 15 to 30 mmol between benzaldehyde and acetophenone was used as a model of reaction for this study. The examination of the effectiveness of the catalytic activity reveals that the compound C14EtOH has the best yield (80% of the desired product), followed by C14iPrOH and C14PrOH. The results were interpreted according to the solubilization capacity, droplet size analysis of reagents (benzaldehyde and acetophenone) in the micellar medium and stability of reaction intermediate (enolate) by the electrostatic interactions generated by positive charge of N+ quaternary ammonium atom. Therefore, the quantum calculations carried out by DFT method for surfactants in the aqueous medium, show that electrophilicity degree and the reaction yield% for three cationic surfactants varies in the same following order: C14PrOH < C14iPrOH < C14EtOH.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bandgar BP, Gawande SS, Bodade RG, Gawande NM, Khobragade CN (2009) Bioorg Med Chem 17:24

    Article  CAS  Google Scholar 

  2. Insuasty B, Tigreros A, Orozco F, Quiroga J, Abonía R, Nogueras M, Adolfo S, Justo C (2010) Bioorg Med Chem 18:14

    Article  CAS  Google Scholar 

  3. Liaras K, Geronikaki A, Glamoclija J, Ciric A, Sokovic M (2011) Bioorg Med Chem 19:10

    Google Scholar 

  4. Deshpande AM, Argade NP, Natu A, Eckman J (1999) Bioorg Med Chem 7:6

    Article  Google Scholar 

  5. Kidwai M, Misra P (1999) Synth Commun 29:18

    Article  Google Scholar 

  6. Coskun D, Ahmedzade M (2013) Res Chem Intermed 40:3

    Google Scholar 

  7. Fang X, Yang B, Cheng Z, Zhang P, Yang M (2013) Res Chem Intermed 40:4

    Google Scholar 

  8. Vignesh SLGUN (2017) Res Chem Intermed 43:11

    Google Scholar 

  9. Varma RS, Kabalka GW, Evans LT, Pagni RM (1985) Synth Commun 15:4

    Google Scholar 

  10. Climent MJ, Garcia H, Primo J (1990) Catal Lett 4:1

    Article  Google Scholar 

  11. Saber A, Rhihil A, Nazih R, Tahir R (2001) Appl Catal A 206:2

    Google Scholar 

  12. Vaidya GN, Fiske S, Verma H, Lokhande S, Kumar D (2019) Green Chem 21:6

    Article  Google Scholar 

  13. Butler RN, Coyne AG (2010) Chem Rev 10:110

    Google Scholar 

  14. Grieco PA (1998) Organic synthesis in water, vol 1. Springer, Dordrecht

    Book  Google Scholar 

  15. Chanda A, Fokin VV (2009) Chem Rev 109:2

    Article  CAS  Google Scholar 

  16. Li C, Chen L (2006) Chem Soc Rev 35:1

    Article  Google Scholar 

  17. Akram M, Yousuf S, Sarwar T, Kabir-ud-Din (2014) Colloids Surf A 441:281–290

    Article  CAS  Google Scholar 

  18. Dwars T, Paetzold E, Oehme G (2005) Angew Chem Int Ed 44:44

    Article  CAS  Google Scholar 

  19. Tehrani-bagha AR, Holmberg K (2013) Materials 6:2

    Article  CAS  Google Scholar 

  20. Vashishtha M, Mishra M, Shah DO (2015) J Mol Liq A 210:151–159

    Article  CAS  Google Scholar 

  21. Khan MN (2006) Micellar catalysis, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  22. Vashishtha M, Mishra M, Undre S, Singh M, Shah DO (2015) J Mol Catal A 396:143–154

    Article  CAS  Google Scholar 

  23. Vashishtha M, Mishra M, Shah DO (2013) Appl Catal A 466:38–44

    Article  CAS  Google Scholar 

  24. Zayas HA, Lu A, Valade D, Amir F, Jia Z, Reilly RKO, Monteiro MJ (2013) ACS Macro Lett 2:4

    Article  CAS  Google Scholar 

  25. Kitawat BS, Singh M, Kale RK, Sustain ACS (2013) Chem Eng 1:8

    Google Scholar 

  26. Vashishtha M, Mishra M, Shah DO (2015) Green Chem 18:5

    Google Scholar 

  27. Isley NA, Linstadt RTH, Kelly SM, Gallou F, Lipshutz BH (2015) Org Lett 17:19

    Article  CAS  Google Scholar 

  28. La Sorella G, Strukul G, Scarso A (2015) Green Chem 17:2

    Article  CAS  Google Scholar 

  29. Mandal S, Mandal S, Biswas S, Banerjee S, Saha B (2017) Res Chem Intermed 44:3

    Google Scholar 

  30. Sar P, Ghosh A, Ghosh D (2014) Res Chem Intermed 41:8

    Google Scholar 

  31. Xu D, Pan Z (2014) Chin Chem Lett 25:8

    Google Scholar 

  32. Zhao Q, Zhao X, Peng H, Liu Y, Yang L, Sun J, Yang L, Shen Y (2019) Catal Sci Technol 9:13

    Google Scholar 

  33. Evans PA, Robinson JE, Nelson JD (1999) J Am Chem Soc 121:51

    Google Scholar 

  34. Schinzer D (1989) Selectivities in Lewis acid promoted reactions. Springer, Dordrecht

    Book  Google Scholar 

  35. Corma A, Garcıa H (2003) Chem Rev 103:11

    Article  CAS  Google Scholar 

  36. Yamamoto H (2008) Lewis acids in organic synthesis. Wiley, Weinheim

    Google Scholar 

  37. Enchev V, Mehandzhiyski AY (2017) Int J Quantum Chem 117:11

    Article  CAS  Google Scholar 

  38. Mehta SK, Chaudhary S, Bhasin KK (2008) J Colloid Interface Sci 321:2

    Google Scholar 

  39. Ganesh KN, Mltra P, Balasubramanlan D (1982) J Phys Chem 86:22

    Article  Google Scholar 

  40. Sabatino P, Szczygiel A, Sinnaeve D, Hakimhashemi M, Saveyn H, Martins JC, Van Der Meeren P (2010) Colloids Surf A 370:1–3

    Article  CAS  Google Scholar 

  41. Ouarti N, Blagoeva IB, El Seoud OA, Ruasse M-F (2001) J Phys Org Chem 14:11

    Article  Google Scholar 

  42. Loopez-Cornejo P, Mozo JD, Roldan E, Domınguez M, Sanchez F (2002) Chem Phys Lett 352:33–38

    Article  Google Scholar 

  43. Hafidi Z, El Achouri M (2018) J Surfactants Deterg 22:3

    Google Scholar 

  44. Rosen MJ, Kunjappu JT (2012) Surfactants and phenomena, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  45. Jalsenjak N, Tezak D (2004) Chem Eur J 10(20):5000–5007

    Article  CAS  Google Scholar 

  46. Zana R (1980) J Colloid Interface Sci 78:2

    Article  Google Scholar 

  47. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:7

    Google Scholar 

  49. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Adv Quant Chem 32:227–261

    Article  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT

  51. Pearson RG (1988) Inorg Chem 27:4

    Article  Google Scholar 

  52. Pearson RG (1986) Proc Natl Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  53. Fringuelli F, Pani G, Piermatti O, Pizzo F (1994) Tetrahedron 50:39

    Article  Google Scholar 

  54. Davies JT, Rideal EK (1961) Science 134:3490

    Google Scholar 

  55. Mukerjee P, Banerjee K (1964) J Phys Chem 68:12

    Article  Google Scholar 

  56. Dharaiya N, Chavda S, Singh K, Marangoni DG, Bahadur P (2012) Spectrochim Acta A. https://doi.org/10.1016/j.saa.2012.03.030

    Article  Google Scholar 

  57. Mukhim T, Ismail K (2005) J Surf Sci Technol 21:3–4

    Google Scholar 

  58. Anachkov SE, Danov KD, Basheva ES, Kralchevsky PA, Ananthapadmanabhan KP (2012) Adv Colloid Interface Sci 183–184:55–67

    Article  CAS  Google Scholar 

  59. Sen PK, Chatterjee P, Pal B (2015) J Mol Catal A 396:23–30

    Article  CAS  Google Scholar 

  60. Romsted LS (2014) Surfactant science and technology: retrospects and prospects. CRC Press, Boca Raton

    Book  Google Scholar 

  61. Kim H, Lim K (2004) Bull Korean Chem Soc 25:3

    CAS  Google Scholar 

  62. Cerichelli G, Cerritelli S, Chiarini M, De Maria P, Fontana A (2002) Chem Eur J 8:22

    Article  Google Scholar 

  63. Das PK, Pramanik R, Banerjee D, Bagchi S (2000) Spectrochim Acta A 56:2763–2773

    Article  CAS  Google Scholar 

  64. Fendler EJ, Fendler JH (1975) Catalysis in micellar and macromolecular systems, 1st edn. Academic Press, New York

    Google Scholar 

  65. Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  66. Brinchi L, Di Profio P, Micheli F, Germani R, Savelli G, Bunton CA (2001) Eur J Org Chem 2001:6

    Article  Google Scholar 

  67. Blaski A, Bunton GA, Foroudian HJ (1995) J Colloid Interface Sci 175:1

    Article  Google Scholar 

  68. Di Profio P, Germani R, Savelli G, Cerichelli G, Chiarini M, Mancini G, Bunton CA, Gillitt ND (1998) Langmuir 14(10):2662–2669

    Article  Google Scholar 

  69. Zarrouk A, Zarrok H, Salghi R, Hammouti B, Touzani R, Bouachrine M (2012) Int J Electrochem Sci 7:7

    Google Scholar 

  70. Obot IB, Kaya S, Kaya C, Tüzün B (2016) Nanostructures 80:82–90

    CAS  Google Scholar 

  71. Fukui K (1970) Theory of orientation and stereoselection. In: Orientation and Stereoselection. Fortschritte der Chemischen Forschung, vol 15/1. Springer, Berlin, Heidelberg

  72. Gece G (2008) Corros Sci 50:11

    Article  CAS  Google Scholar 

  73. Kosar B, Albayrak C (2011) Spectrochim Acta A 78(1):160–167

    Article  CAS  Google Scholar 

  74. Lewis DFV, Ioannides C, Parke DV (1994) InteXenobiotica 24(5):401–408

    Article  CAS  Google Scholar 

  75. LoPachin RM, Gavin T, DeCaprio A, Barber DS (2013) Chem Res Toxicol 25:2

    Google Scholar 

  76. Kannan V, Sreekumar K, Ulahannan RT (2018) J Mol Struct 1166:315–320

    Article  CAS  Google Scholar 

  77. Nayak PL, Rout MK (1975) J Indian Chem Soc 52:809

    CAS  Google Scholar 

  78. Nayak PL, Rout MK (1970) J Indian Chem Soc 47:807

    CAS  Google Scholar 

  79. Tichit D, Lhouty MH, Guida A, Chiche BH, Figueras F, Auroux A, Bartalini D, Garrone E (1995) J Catal 151:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El Achouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafidi, Z., Ait Taleb, M., Amedlous, A. et al. Micellar Catalysis Strategy of Cross-Condensation Reaction: The Effect of Polar Heads on the Catalytic Properties of Aminoalcohol-Based Surfactants. Catal Lett 150, 1309–1324 (2020). https://doi.org/10.1007/s10562-019-03045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03045-6

Keywords

Navigation