Skip to main content
Log in

Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Understanding belowground morphological mechanisms of trees and grasses is a complicated task but can help in the design and management of silvopastoral systems. In this study, we evaluated the effect of the harvest intervals (i.e. 30 and 50 days) of aboveground biomass on the fine root density and vertical distribution in two silvopastoral systems (SPS): one comprising Leucaena leucocephala (legume tree) and Cynodon plectostachyus (grass) and the other L. leucocephala and Panicum maximum. We used a completely randomized design with four repetitions. We sampled fine roots by using a metal cylinder (8 cm diameter and 50 cm length) 7 days after each harvest. We washed the samples with pressurized water to separate them from the soil. The roots were digitalized at a resolution of 600 dpi to determine the diameter and specific root length by using IJ Rhizo® software. Samples were subsequently dried to quantify fine root mass. We found that the greater percentages of fine roots were between 0.4 and 0.8 mm for the legume and between 0.2 and 0.4 mm for grasses. The fine root length and mass density of P. maximum was higher (P < 0.001) compared to C. plectostachyus in both harvest intervals. However, the fine root density of L. leucocephala did not vary between SPS (P > 0.05). The effect of harvest interval was significant only in some soil layers in both SPS (P > 0.05). Most of the pasture roots were found in the upper soil layer (0–20 cm), while L. leucocephala roots were present to deeper soil layers. We conclude that P. maximum has a greater rooting capacity and a more rapid recovery than C. plectostachyus, which has greater diameters and lower root density. However, L. leucocephala presented deeper and thicker fine roots in both SPS, which is a good indication of its belowground recovery capacity to aboveground disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308:11–22

    CAS  Google Scholar 

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72

    Google Scholar 

  • Aryal DR, Morales D, Tondopó C, Pinto R, Guevara F, Venegas J, Ponce A, Villanueva G, Casanova F, Rodríguez L, Ley A, Hernández A, Medina F, Velázquez C, Alcudia A, Euan I (2018) Soil organic carbon depletion from forests to grasslands conversion in Mexico: a review. Agriculture 8:181. https://doi.org/10.3390/agriculture8110181

    Article  CAS  Google Scholar 

  • Aryal DR, Gómez-González R, Hernández-Nuriasmú R, Morlaes-Ruiz D (2019) Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor Syst 93:213–227

    Google Scholar 

  • Bacab PHM, Solorio SFJ (2011) Oferta y consumo de forraje y producción de leche en ganado de doble propósito manejado en sistemas silvopastoriles en Tepalcatepec, Michoacán. Trop Subtrop Agroecosyst 13:271–278

    Google Scholar 

  • Brassard BW, Chen HY, Cavard X, Laganiere X, Reich PB, Bergeron Y, Pare D, Yuan Z (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    CAS  Google Scholar 

  • Callejas RR, Rojo TE, Benavidez ZC, Kania KE (2012) Crecimiento y distribución de raíces y su relación con el potencial productivo de parrales de vides de mesa. Agrociencia 46:23–35

    Google Scholar 

  • Carrillo Y, Jordan C, Jacobsen K, Mitchell K, Raber P (2011) Shoot pruning of a hedgerow perennial legume alters the availability and temporal dynamics of root-derived nitrogen in a subtropical setting. Plant Soil 345:59–68

    CAS  Google Scholar 

  • Carter MR, Angers DA, Kunelius HT (1994) Soil structural form and stability, and organic matter under cool-season perennial grasses. Soil Sci Soc Am J 58:1194–1199

    Google Scholar 

  • Casanova-Lugo F, Ramírez-Avilés L, Solorio-Sánchez FJ (2010) Efecto del intervalo de poda sobre la biomasa foliar y radical en árboles forrajeros en monocultivo y asociados. Trop Subtrop Agroecosyst 12:657–665

    Google Scholar 

  • Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez FJ, Parsons D, Ramírez-Avilés L (2014) Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder Banks systems in Yucatan, Mexico. Agrofor Syst 88:29–39

    Google Scholar 

  • Cresswell HP, Kirkegaard JA (1995) Subsoil amelioration by plant roots-the process and the evidence. Aust J Soil Res 33:221–239

    Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur J Soil Sci 57:13–25

    Google Scholar 

  • Das DK, Chaturvedi OP (2008) Root biomass and distribution of five agroforestry tree species. Agrofor Syst 74:223–230

    Google Scholar 

  • Defrenet E, Roupsard O, Van den Meersche K, Charbonnier F, Pérez-Molina JP, Khac E, Prieto I, Stokes A, Roumet C, Rapidel B, Virginio FEM, Vargas VJ, Robelo D, Barquero A, Jourdan C (2016) Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. Ann Bot 118:833–851

    PubMed  PubMed Central  Google Scholar 

  • Fujii Y (2014) Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch. J Crop Prod 4(2):257–275

    Google Scholar 

  • Giraldo C, Escobar F, Chara JA, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conservat Divers 4:115–122

    Google Scholar 

  • Gregory P (2006) Plant roots: growth, activity and interaction with soils. Blackwell Publishing, Oxford

    Google Scholar 

  • Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929

    PubMed  Google Scholar 

  • Guevara E, Guenni O (2013) Densidad y longitud de raíces en plantas de Leucaena leucocephala (Lam.) De Wit. Multiciencias 13(4):372–380

    Google Scholar 

  • Hagedorn F, Gavazov K, Alexander JM (2019) Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365:1119–1123

    CAS  PubMed  Google Scholar 

  • Jose S, Gillespie AR, Seifert JR, Pope PE (2001) Comparison of minirhizotron and soil core methods for quantifying root biomass in a temperate alley cropping system. Agrofor Syst 52:161–168

    Google Scholar 

  • Jose S, Walter D, Kumar BM (2019) Ecological considerations in sustainable silvopasture design and management. Agrofor Syst 93:317–331. https://doi.org/10.1007/s10457-016-0065-2

    Article  Google Scholar 

  • Kulmatiski A, Sprouse SRC, Beard KH (2017) Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa. Plant Soil. https://doi.org/10.1007/s11104-017-3277-y

    Article  Google Scholar 

  • Kunst C, Ledesma R, Castañares M, Cornacchione M, Van Meer H, Godoy J (2014) Yield and growth features of Panicum maximum (Jacq.) var Trichoglume cv Petrie (Green Panic) under woody cover, Chaco region, Argentina. Agrofor Syst 88:157–171

    Google Scholar 

  • Laan M, Reinhardt CF, Belz RG, Truter WF, Foxcroft LC, Hurle K (2008) Interference potential of the perennial grasses Eragrostis curvula, Panicum maximum and Digitaria eriantha with Parthenium Hysterophorus. Trop Grassl 42:88–95

    Google Scholar 

  • Larson JE, Funk JL (2016) Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytol 210:827–838

    PubMed  Google Scholar 

  • Morlat R, Jacquet A (1993) The soil effects on the grapevine root system in several vineyards of the Loire valley (France). Vitis 32:35–42

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manage 261:1654–1663

    Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Google Scholar 

  • Pierret A, Gonkhamdee S, Jourdan C, Jean-Luc M (2013) IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant Soil. https://doi.org/10.1007/s11104-013-1795-9

    Article  Google Scholar 

  • Piñeiro-Vázquez AT, Ayala-Burgos AJ, Chay-Canúl AJ, Ku-Vera JC (2013) Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in pelibuey lambs. Trop Anim Health Prod 45:577–583

    PubMed  Google Scholar 

  • Rasse DP, Smucker AJM, Santos D (2000) Alfalfa root and shoot mulching effects on soil hydraulic properties and aggregation. Soil Sci Soc Am J 64:725–731

    CAS  Google Scholar 

  • Řezáčová V, Slavíková R, Zemková L, Konvalinková T, Procházková V, Šťovíček V, Hršelová H, Beskid O, Hujslová M, Gryndlerová H, Gryndler M, Püschel D, Jansa J (2018) Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil. https://doi.org/10.1007/s11104-018-3606-9

    Article  Google Scholar 

  • Richards D (1983) The grape root system. Hortic Rev 5:127–168

    Google Scholar 

  • Rincon CA, Ligarreto MA, Garay E (2008) Producción de forraje en los pastos Brachiaria decumbens cv. Amargo y Brachiaria brizantha cv. Toledo, sometidos a tres frecuencias y a dos intensidades de defoliación en condiciones del piedemonte llanero colombiano. Rev Fac Nal Agron Medellín 61(1):4336–4346

    Google Scholar 

  • Rivera I, Trujillo E (1981) Anatomía y morfología de la raíz de la palma de Chontaduro Bactris gasipaes K. Trabajo de grado presentado para optar el título de Ingeniero Agrónomo. Universidad Nacional. Palmira, Colombia

  • Rosado PBH, Martins AC, Colomeu TC, Oliveira RS, Joly CA, Aidar MPM (2011) Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotrop 11(3):203–209

    Google Scholar 

  • Sánchez-Silva S, De Jong BHJ, Aryal DR, Huerta-Lwanga E, Mendoza-Vega J (2018) Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J Trop Ecol 34(6):364–377

    Google Scholar 

  • Schaller M, Schroth G, Beer J, Jimenez F (2003) Root interactions between young Eucalyptus deglupta trees and competitive grass species in contour strips. For Ecol Manage 179:429–440

    Google Scholar 

  • Sellés G, Ferreyra R, Contreras G, Ahumada R, Valenzuela J, Bravo R (2003) Manejo de riego por goteo en uva de mesa cv. Thompson Seedless cultivada en suelos de textura fina. Agric Téc 63(2):180–192

    Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78:269–286

    Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Sci Soc Am J 64:1042–1049

    CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Google Scholar 

  • Tamayo-Chim M, Reyes-García C, Orellana R (2012) A combination of forage species with different responses to drought can increase year-round productivity in seasonally dry silvopastoral systems. Agrofor Syst 84(2):287–297

    Google Scholar 

  • Torres-Guerrero CA, Etchevers BJD, Fuentes-Ponce MH, Govaerts B, De León-González F, Herrera JM (2013) Influencia de las raíces sobre la agregación del suelo. Terra Latinoamericana 31(1):71–84

    Google Scholar 

  • Valles-de la Mora B, Castillo-Gallegos E, Alonso-Díaz M, Ocaña-Zavaleta E, Jarillo-Rodríguez J (2016) Live-weight gains of Holstein x Zebu heifers grazing a Cratylia argentea/Toledo-grass (Brachiaria brizantha) association in the Mexican humid tropics. Agrofor Syst. https://doi.org/10.1007/s10457-016-9980-5

    Article  Google Scholar 

  • Van Noordwijk M, Brouwer G, Meijboom F, Oliveira MG, Bengough AG (2000) Trench Profile Techniques and Core Break Methods. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, Van de Geijn SC (eds) Root methods: a handbook. Springer, Berlin, pp 211–233

    Google Scholar 

  • Villanueva-López G, Lara-Pérez LA, Oros-Ortega I, Ramírez-Barajas PJ, Casanova-Lugo F, Ramos-Reyes R, Aryal DR (2019) Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agric Ecosyst Environ 286:106658. https://doi.org/10.1016/j.agee.2019.106658

    Article  Google Scholar 

  • Wang Z, Ding L, Wang J, Zuo X, Yao Z, Feng J (2016) Effects of root diameter, branch order, root depth, season and warming on root longevity in an alpine meadow. Ecol Res 31:739–747. https://doi.org/10.1007/s11284-016-1385-4

    Article  Google Scholar 

  • Ward D, Kirkman K, Tsvuura Z (2017) An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS ONE 2(5):1–21

    Google Scholar 

  • Weemstra M, Sterck FJ, Visser E, Kuyper T, Goudzwaard L, Mommer L (2016) Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils. Plant Soil. https://doi.org/10.1007/s11104-016-3148-y

    Article  Google Scholar 

  • Whalley WR, Riseley B, Leeds HPB, Bird NRA, Leech PK, Adderley WP (2005) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360

    Google Scholar 

  • Yunusa IAM, Zolfaghar S, Zeppel MJB, Li Z, Palmer AR, Eamus D (2012) Fine root biomass and its relationship to evapotranspiration in woody and grassy vegetation covers for ecological restoration of waste storage and mining landscapes. Ecosystems 15:113–127

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Tecnológico Nacional de México for financial support throughout this project (6324.17-P). We are also grateful to the Consejo Nacional de Ciencia y Tecnología for financing infrastructures project (No. 270666) to carry out field and laboratory works and obtain a M. Sc. degree (of the first author) in Sustainable Agroecosystems. We acknowledge two anonymous reviewers for their valuable comments and suggestions in the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Casanova-Lugo.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montejo-Martínez, D., Díaz-Echeverría, V.F., Villanueva-López, G. et al. Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agroforest Syst 94, 843–855 (2020). https://doi.org/10.1007/s10457-019-00457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-019-00457-6

Keywords

Navigation