Skip to main content
Log in

Isotope Characteristics (δ13C, δ18O) of Continental Carbonates from Permian‒Triassic Rocks in the Northeastern Russian Plate: Paleoclimatic and Biotic Reasons and Chemostratigraphy

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Carbon and oxygen isotope compositions were determined in the pedogenic, sedimentary, and organogenic carbonates from Upper Permian (Vyatkian Stage) and Lower Triassic (Induan Stage) continental rocks in the northeastern Moscow Syneclise. Variations of δ18O (18.0 to 29.1‰ SMOW) and δ13C (‒8.8 to 0.7‰ PDB) in them could be provoked both by regional climatic fluctuations and by perturbation of the global carbon cycle at the Permian‒Triassic boundary. Decrease of δ18O in pedogenic carbonates at the top of the Vyatkian Stage was likely caused by cooling on the northeastern side of Pangea. The negative excursion of δ13C values at this stratigraphic level correlates with the analogous excursion recorded in marine carbonates of the Paleo- and Neotethys and corresponds to the end-Permian biotic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abels, H.A., Lauretano, V., van Yperen, A.E., et al., Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming, Clim. Past, 2016, vol. 12, pp. 1151–1163.

    Article  Google Scholar 

  2. Alonso-Zarza, A.M., Initial stages of laminar calcrete formation by roots: examples from Neogene of central Spain, Sediment. Geol., 1999, vol. 126, pp. 177–191.

    Article  Google Scholar 

  3. Alonso-Zarza, A.M., Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record, Earth-Sci. Rev, 2003, vol. 60, pp. 261–268.

    Article  Google Scholar 

  4. Andrews, J.A. and Schlesinger, W.H., Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment, Global Biogeochem. Cycle, 2001, vol. 15, pp. 149–162.

    Article  Google Scholar 

  5. Arefiev, M.P., Relationship between sedimentational settings and biosdiversity in the aqueous biota in Permo-Triassic rocks of the Moscow Syneclise, in Permskaya sistema: stratigrafiya, paleontologiya, paleogeografiya, geodinamika i mineral’nye resursy (Permian System: Stratigraphy, Paleontology, Paleogeography, Geodynamics, and Minerals Resources), Karaseva, T.V, Kuznetsova, E.A, and Ponomareva, G.Yu, Eds., Perm: Perm. Gos. Univ., 2011.

  6. Arefiev, M.P., Induan humidization in the Moscow Syneclise: Evidence and possible causes, in Paleostrat-2017. Abstract Volume, Alekseev, A.S., Ed., Moscow, 2017, pp. 5–6.

    Google Scholar 

  7. Arefiev, M.P. and Kuleshov, V.N., Study of the carbon and oxygen isotope composition in the Permian/Triassic boundary rocks in the Moscow Syneclise, in Kontseptual’nye problemy litologicheskikh issledovanii v Rossii (Conceptual Problems of Lithological Studies in Russia), Kazan: Kazan. Univ., 2011, pp. 59–62.

  8. Arefiev, M.P. and Kuleshov, V.N., The Induan humidization within Moscow Syneclise: Evidence and possible causes, in Upper Paleozoic Earth Systems: High-Precision Biostratigraphy, Geochronology and Petroleum Resources. Abstract Volume, Kazan: Kazan Univ. Press, 2017, p. 15.

    Google Scholar 

  9. Arefiev, M. and Kuleshov, V., Evidence for and causes of the Induan humidization of the Moscow Syneclise, in Advances in Devonian, Carboniferous and Permian Research: Stratigraphy, Environments, Climate and Resources, Nurgaliev, D. Ed., Kazan Univ. Press 2018, pp. 265–273

    Google Scholar 

  10. Arefiev, M.P., Shkurskii, B.B., and Grigor’eva, A.V., Influence of the Baltic and Uralian provenances at the Permian/Triassic boundary in the northeastern Moscow Syneclise, in Kontseptual’nye problemy litologicheskikh issledovanii v Rossii (Conceptual Problems of Lithological Studies in Russia),Yapaskurt, O.V, Khasanov, R.R, and Sungatullin, R.Kh, Eds., Kazan: Kazan. Univ., 2011.

  11. Arefiev, M.P., Alekseeva, T.V., and Alekseev, A.O., Clay minerals in Permian and Triassic paleosoils in the Moscow Syneclise and their paleoclimatic interpretation, in, in Gliny i glinistye mineraly (Clays and Clay Minerals), Alekseeva, T.V. and Udal’tsov, S.N., Eds., Pushchino: IFKhiBPP RAN, 2012, pp. 16–17.

  12. Arefiev, M.P., Kuleshov, V.N., Shkurskii, B.B., and Grigor’eva, A.V., Relation of the isotopic composition of pedogenic carbonates in the heavy fraction and cyclicity of the Permo-Triassic continental rocks in the Moscow Syneclise, in Prioritetnye i innovatsionnye napravleniya litologicheskikh issledovanii (Priority and Innovation Directions in Lithological Studies), Yekaterinburg: IGG Uro RAN, 2012, pp. 9–12.

  13. Arefiev, M.P., Kuleshov, V.N., and Pokrovsky, B.G., Paleoecological and isotope-geochemical events at the Permian/Triassic boundary (based on δ13C and δ18O values in continental rocks), in Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii (Sedimentary Basins, Sedimentary and Postsedimentary Processes in the Geological History), Novosibirsk: Inst. Neftegaz. Geol. Geofiz., 2013, vol. 1, pp. 43–46.

  14. Arefiev, M.P., Golubev, V.K., Balabanov, Yu.P., et al., Type and reference sections of the Permian-Triassic continental sequences of the East European Platform: main isotope, magnetic, and biotic events, in XVIII Int. Congr. on Carboniferous and Permian. Sukhona and Severnaya Dvina Rivers Field Trip, Alekseev, A.S., Ed., Moscow, 2015a.

  15. Arefiev, M.P., Kuleshov, V.N., and Pokrovsky, B.G., Carbon and oxygen isotope composition in Upper Permian–Lower Triassic terrestrial carbonates of the East European Platform: A global ecological crisis against the background of an unstable climate, Dokl. Earth Sci., 2015b, vol. 460, no. 1, pp. 11–15.

    Article  Google Scholar 

  16. Arefiev, M.P., Golubev, V.K., and Kuleshov, V.N., et al., Complex paleontological, sedimentological, and geochemical characteristics of Permian terminal rocks on the northeastern wall of the Moscow Syneclise: Communication 1. Basin of the Malaya Severnaya Dvina River, Byull. Mosk. O-va Ispyt. Prir., Otd.Geol., 2016a, vol. 91, no. 1, pp. 24–49.

    Google Scholar 

  17. Arefiev, M.P., Golubev, V.K., and Karasev, E.V., et al., Complex paleontological, sedimentological, and geochemical characteristics of Permian terminal (Vyazanikovian) rocks on the northeastern wall of the Moscow Syneclise: Communication 2. Lower Reaches of the Yug River, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2016b, no. 2/3, pp. 47–63.

  18. Bachmann, G.H. and Kozur, H.W., The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity, Hallesches Jahrb. Geowiss., 2004, vol. 26, pp. 17–62.

    Google Scholar 

  19. Bai, S.G., Jiao, Y., Yang, W.Z.P., et al., Review of progress in soil inorganic carbon research, in IOP Conf. Ser.: Earth Environm. Sci., 2017, Vol. 100, pp. 1–5.

    Article  Google Scholar 

  20. Barsbold, R. and Khand, Y., The non-marine Cretaceous of Mongolia, Paleoclimates in Asia during the Cretaceous: Their Variations, Causes, and Biotic and Environmental Responses. Abstract Volume, Ulaanbaatar: Paleontol. Center Mongol. Acad Sci., 2008, pp. 13–16.

    Google Scholar 

  21. Baud, A., Magaritz, M., and Holser, W.T., Permian–Triassic of the Tethys: carbon isotope studies, Geol. Rundsch. Z. Allg. Geol., 1989, vol. 78, pp. 649–677.

    Article  Google Scholar 

  22. Bayat, O., Karimi, A., and Khademi, H., Stable isotope geochemistry of pedogenic carbonates in loess-derived soils of northeastern Iran: Paleoenvironmental implications and correlation across Eurasia, Quat. Int., 2017, vol. 429, pp. 52–61.

    Article  Google Scholar 

  23. Becker, L., Poreda, R.J., Basu, A.R., et al., Bedout: a possible end-Permian impact crater offshore of northwestern Australia, Science, 2004, vol. 304, pp. 1469–1476.

    Article  Google Scholar 

  24. Berner, R.A., Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 7, pp. 4172–4177.

    Article  Google Scholar 

  25. Berner, R.A., Carbon, sulfur and O2 across the Permian-Triassic boundary, J Geochem. Explor., 2006, vol. 88, no. 1/3, pp. 416–418.

    Article  Google Scholar 

  26. Blom, G.I, Katalog mestonakhozhdenii faunisticheskikh ostatkov v nizhnetriasovykh otlozheniyakh srednego Povolzh’ya i Prikam’ya (Catalog of the Localization of Faunal Remains and Lower Triassic Rocks in the Volga and Kama River Regions), Kazan, 1968.

  27. Bowring, S.A., Erwin, D.H., Jin, Y.G., et al., U/Pb zircon geochronology and tempo of the end-Permian mass extinction, Science, 1998, vol. 280, pp. 1039–1045.

    Article  Google Scholar 

  28. Breecker, D.O., Sharp, Z.D., and McFadden, L.D., Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soil from central New Mexico, USA, Geol. Soc. Am. Bull., 2009, vol. 121, pp. 630–640.

    Article  Google Scholar 

  29. Cao, C.Q., Wang, W., Liu, L.J., et al., Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China, Earth Planet. Sci. Lett., 2008, vol. 270, pp. 251–257.

    Article  Google Scholar 

  30. Cao, C.Q., Yang, Y.C., Shen, S.Z., et al., Pattern of d13Ccarb and implications for geological events during the Permian-Triassic transition in South China, Geol. J., 2010, vol. 45, pp. 186–194.

    Article  Google Scholar 

  31. Cerling, T.E., The stable isotopic composition of modern soil carbonate and its relationship to climate, Earth Planet. Sci. Lett., 1984, vol. 71, pp. 229–240.

    Article  Google Scholar 

  32. Cerling, T.E., Quade, J., Wnag, Y., and Bowman, J.R., Carbon isotopes in soils and paleosoils as ecology and paleoecology indicator, Nature, 1989, vol. 341, pp. 138–139.

    Article  Google Scholar 

  33. Chen, B., Joachimski, M.M., Sun, Y.D., et al., Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: climatic or sea-level signal?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, vol. 311, pp. 145–153.

    Article  Google Scholar 

  34. Chen, B., Joachimski, M.M., Shen, Sh.-Zh., et al., Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited, Gondwana Res., 2013, vol. 24, pp. 77–89.

    Article  Google Scholar 

  35. Clarkson, M.O., Richoz, S., and Wood, R., A et al. a new high-resolution δ13C record for the Early Triassic: Insights from the Arabian Platform, Gondwana Res., 2013, vol. 24, pp. 233–242.

    Article  Google Scholar 

  36. Cui, Y., Bercovici, A., Yu, J., Kump, L.R., and Freeman, K. H., Su, S.V., Vajda, V. Carbon cycle perturbation expressed in terrestrial Permian-Triassic boundary sections in South China, Global Planet.Change, 2017, vol. 148, pp. 272–285.

    Article  Google Scholar 

  37. Dambaev, V.B., Banzaratskaeva, T.G., and Buyantueva, L.B., et al. Carbon isotope variations in the plant and soil of steppe pastures in Inner Mongolia, Geogr. Prir. Resur., 2016, no. 2, pp. 118–124.

  38. Deutz, P., Montañez, I.P., Monger, H.C., and Morrison, J., Morphology and isotope heterogeneity of Late Quaternary pedogenic carbonates: Implications for paleosoil carbonates as paleoenvironmental proxies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2001, vol. 166, pp. 293–317.

    Article  Google Scholar 

  39. Ekart, D.D., Cerling, T.E., Montanez, I.P., and Tabor, N.J., A 400 million years carbon isotope record of pedogenic carbonate: implications for peleoatmospheric carbon dioxide, Am. J. Sci., 1999, vol. 299, pp. 805–826.

    Article  Google Scholar 

  40. Erwin, D.H., Bowring, S.A., and Jin, Y.G., End-Permian mass extinctions: a review, Geol. Soc. Am. Spec. Pap., 2002, vol. 356, pp. 363–383.

    Google Scholar 

  41. Faure, K., de Wit, M.J., and Willis, J.P., Late Permian global coal hiatus linked to 13C-depleted CO2 flux into the atmosphere during the final consolidation of Pangea, Geology, 1995, vol. 23, no. 6, pp. 507–510.

    Article  Google Scholar 

  42. Foster, C.B. and Afonin, S.A., Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian-Triassic boundary, J. Geol. Soc., 2005, vol. 162, pp. 653–659.

    Article  Google Scholar 

  43. Ghosh, P., Adkins, J., Affek, H., et al., 13C-18O bonds in carbonate minerals: A new kind of paleothermometer, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 1439–1456.

    Article  Google Scholar 

  44. Haas, J., Demeny, A., Hips, K., and Vennemann, T.W., Carbon isotope excursions and microfacies changes in marine Permian-Triassic boundary sections in Hungary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 237, pp. 160–181.

    Article  Google Scholar 

  45. Hallam, A. and Wignall, P.B., Mass extinctions and sea-level changes, Earth-Sci. Rev., 1999, vol. 48, no. 4, pp. 217–250.

    Article  Google Scholar 

  46. Haq, B.U. and Schutter, S.R., A chronology of Paleozoic sea-level changes, Science, 2008, vol. 322, pp. 64–68.

    Article  Google Scholar 

  47. Heydari, E., Wade, W.J., and Hassanzadeh, J., Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata, Sediment. Geol., 2001, vol. 143, pp. 191–197.

    Article  Google Scholar 

  48. Hongfu, Y., Kexin, Z., Jinnan, T., et al., The global stratotype section and point (GSSP) of the Permian-Triassic boundary, Episodes, 2001, vol. 24, no. 2, pp. 102–114.

    Article  Google Scholar 

  49. Hough, B.G., Fan, M., and Passey, B.H., Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction, Earth Planet. Sci. Lett., 2014, vol. 391, pp. 110–120.

    Article  Google Scholar 

  50. Huang, Ch.-M., Wang, Ch.-Sh., and Tang, Y., Stable carbon and oxygen isotopes of pedogenic carbonates in ustic vertisols: Implications for paleoenvironmental change, Pedosphere, 2005, vol. 15, no. 4, pp. 539–544.

    Google Scholar 

  51. Inozemtsev, S.A. and Targul’yan, V.O., Verkhnepermskie paleopochvy: svoistva, protsessy, usloviya formirovaniya (Upper Permian Paleosoil: Properties, Processes, and Formation Conditions), Moscow: GEOS, 2010.

  52. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (World Reference Base for Soil Resources 2014), Rome: FAO, update 2015.

  53. Isozaki, Y., Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea, Science, 1997, vol. 276, pp. 235–238.

    Article  Google Scholar 

  54. Ivakhnenko, M.F., Golubev, V.K., and Gubin, Yu.M., et al., Permskie i triasovye tetrapody Vostochnoi Evropy (Permian and Triassic Tetrapods in East Europe), Moscow: GEOS, 1997.

  55. Jin, Y.G., Wang, Y., Wang, W., et al., Pattern of marine mass extinction near the Permian-Triassic boundary in South China, Science, 2000, vol. 289, pp. 432–436.

    Article  Google Scholar 

  56. Joachimski, M.M., Lai, X., Shen, S., et al., Climate warming in the latest Permian and the Permian-Triassic mass extinction, Geology, 2012, vol. 40, pp. 195–198.

    Article  Google Scholar 

  57. Jost, A.B., Mundil, R., He, B., et al., Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes, Earth Planet. Sci. Lett., 2012, vol. 396, pp. 201–212.

    Article  Google Scholar 

  58. Kaiho, K., Chen, Z.-Q., Ohashi, T., et al., A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2005, vol. 223, pp. 172–180.

    Article  Google Scholar 

  59. Karberg, N.J., Pregitze, K.S., King, J.S., et al., Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone, Oecologia, 2005, vol. 142, pp. 296–236.

    Article  Google Scholar 

  60. Kearsey, T., Twitchet, R.J., and Newell, A.J., The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia, Geol. Mag., 2012, vol. 149, no. 2, pp. 291–307.

    Article  Google Scholar 

  61. Keatings, K.W., Heaton, T.H., and Holmes, J.A., Carbon and oxygen isotope fractionation in non-marine ostracods; results from a 'natural culture' environment, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 10, pp. 1701–1711.

    Article  Google Scholar 

  62. Khadkikar, A.S., Merh, S.S., Malic, J.N., and Chamial, L.S., Calcretes in semi-arid alluvial systems: formative pathways and sinks, Sediment. Geol., 1998, vol. 116, pp. 251–216.

    Article  Google Scholar 

  63. Khokhlova, O. and Myakshina, T., Dynamics of carbonates in soils under different land use in forest-steppe area of Russia using stable and radiogenic carbon isotope data, Geosciences, 2018, vol. 8, no. 4, pp. 1–21.

    Article  Google Scholar 

  64. Klimat v epokhi krupnykh biosfernykh perestroek (Climate in Epochs of Great Biospheric Rearrangements), Moscow: Nauka, 2004.

  65. Korte, C. and Kozur, H.W., Carbon isotope trends in continental lake deposits of uppermost Permian to Lower Olenekian Germanic Lower Buntsandstein (Calvörde and Bernburg formations), Hallesch. Jahrb. Geowissensch., 2005, vol. 19, pp. 87–94.

    Google Scholar 

  66. Korte, C. and Kozur, H.W., Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review, J. Asian Earth Sci., 2010, vol. 39, pp. 215–235.

    Article  Google Scholar 

  67. Korte, C., Pande, P., Kalia, P., et al., Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere, J. Asian Earth Sci., 2010, vol. 37, pp. 293–311.

    Article  Google Scholar 

  68. Krasilov, V.A., Model of biospheric crises, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Rearrangements and Evolution of Biosphere), Moscow: Paleontol. Inst. RAN, 2001, no. 4, pp. 9–16.

  69. Krull, E.S. and Retallack, G.J., δ13C depth profiles from paleosols across the Permian-Triassic boundary: evidence for methane release, Geol. Soc. Am. Bull., 2000, vol. 112, pp. 1459–1472.

    Google Scholar 

  70. Krull, E.S., Retallack, G.J., Campbell, I.H., and Lyon, G.L., δ113Corg chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand: evidence for high-latitudinal methane release, New Zeal. J. Geol. Geoph., 2000, vol. 43, pp. 23–32.

    Google Scholar 

  71. Kump, L.R. and Arthur, M.A., Interpreting carbon-isotope excursions: carbonates and organic matter, Chem. Geol., 1999, vol. 161, pp. 181–198.

    Article  Google Scholar 

  72. Lai, X., Wang, W., Wignall, P.B., et al., Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2008, vol. 269, pp. 78–93.

    Article  Google Scholar 

  73. Leier, A., Quade, J., DeCelles, P., and Kapp, P., Stable isotopic results from paleosol carbonate in South Asia: paleoenvironmental reconstructions and selective alteration, Earth Planet. Sci. Lett., 2009, vol. 179, pp. 242–254.

    Article  Google Scholar 

  74. Leng, M.J. and Marshall, J.D., Palaeoclimate interpretation of stable isotope data from lake sediment archives, Quat. Sci. Rev., 2004, vol. 23, pp. 811–831.

    Article  Google Scholar 

  75. Levin, N.E., Brown, F.H., Behrensmeyer, A.K., et al., Paleosoil carbonates from the Omomo Group: Isotopic records of local and regional environmental change in East Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, vol. 307, pp. 75–89.

    Article  Google Scholar 

  76. Liu, B., Phillips, F.M., and Campbell, A.R., Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: implications for paleoenvironmental change, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1996, vol. 124, pp. 233–246.

    Article  Google Scholar 

  77. Lozovskii, V.R., The Permo-Triassic crisis and its possible cause, Byull. Mosk. O-va Ispyt. Prir., Otd.Geol., 2013, vol. 88, no. 1, pp. 49–58.

    Google Scholar 

  78. Luo, G.M., Wang, Y.B., Yang, H., et al., Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian-Triassic crisis interval, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, vol. 299, pp. 70–82.

    Article  Google Scholar 

  79. Margaritz, M., Bär, R., and Holser, W.T., The carbon isotope shift at the Permian/Triassic boundary in the Southern alps is gradual, Nature, 1988, vol. 331, pp. 337–339.

    Article  Google Scholar 

  80. Materialy meteorologicheskikh issledovanii. Izotopnyi sostav meteornykh osadkov v Tsentral’noi i Vostochnoi Evrope (Materials of Meteorological Studies: Isotopic Composition of Sediments in Central and Eastern Europe), Moscow: VINITI, 1987.

  81. Monger, H.C. and Adams, H.P., Micromorphology of calcite-silica deposits, Yucca Mountain, Nevada, Soil Sci. Soc. Am. J., 1996, vol. 60, pp. 519–530.

    Article  Google Scholar 

  82. Nurgalieva, N.G., Silant’ev, V.V., Vetoshkina, O.S., and Urazaeva, M.N., Carbon and oxygen isotope indicators in the reference section of the Urzhumian and Tatarian stages, Uchen Zap. Kazan. Univ.,Ser. Estestv. Nauki, 2012, vol. 154, part 1, pp. 189–196.

    Google Scholar 

  83. Oberhänsli, H., Hsü, K.J., Piasecki, S., and Weissert, H., Permian–Triassic carbon-isotope anomaly in Greenland and the Southern Alps, Histor. Biol., 1989, vol. 2, pp. 37–49.

    Article  Google Scholar 

  84. Payne, J.L. and Clapham, ME., End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, pp. 89–111.

    Article  Google Scholar 

  85. Peters, N.A., Huntington, K.W., and Hoke, G.D., Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry, Earth Planet. Sci. Lett., 2013, vol. 361, pp. 208–218.

    Article  Google Scholar 

  86. Quade, J., Cerling, T.E., and Bowman, J.R., Systematics variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States, Geology, 1989, vol. 101, pp. 464–475.

    Google Scholar 

  87. Quade, J., Cater, J.M.L., Ojha, T.P., et al., Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols, Geology, 1995, vol. 107, pp. 1381–1397.

    Google Scholar 

  88. Quade, J., Garzione, C., and Eiler, J., Paleoelevation reconstruction using pedogenic carbonates, Rev. Mineral. Geochem., 2007, vol. 66, pp. 53–87.

    Article  Google Scholar 

  89. Quade, J., Eiler, J., Daëron, M., and Breecker, D., The clumped isotope geothermometer in soil and paleosol carbonate, Mineral. Mag., 2012, Goldschmidt 2012 Conf. Abstr., pp. 2260–2261.

  90. Quade, J., Eiler, J., Daëron, M., and Achyuthan, H., The clumped isotope geothermometer in soil and paleosol carbonate, Geochim. Cosmochim. Acta, 2013, vol. 105, pp. 92–107.

    Article  Google Scholar 

  91. Rabenhorst, M.C. and Wilding, L.P., Pedogenesis on the Edwards Plateau, Texas: III. New model for the formation of petrocalcic horizons 1, Soil Sci. Soc. Am. J., 1986, vol. 50, pp. 693–699.

    Article  Google Scholar 

  92. Raup, D., Size of the Permo-Triassic bottleneck and its evolutionary implications, Science, 1979, vol. 206, pp. 217–218.

    Article  Google Scholar 

  93. Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., et al., The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.

    Article  Google Scholar 

  94. Renne, P.R., Black, M.T., Zhang, Z., et al., Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism, Science, 1995, vol. 269, pp. 1413–1416.

    Article  Google Scholar 

  95. Retallack, G.J., Permian-Triassic life crisis on land, Science, 1995, vol. 267, pp. 77–80.

    Article  Google Scholar 

  96. Retallack, G.J., Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosoils, Geology, 2005, vol. 33, pp. 333–336.

    Article  Google Scholar 

  97. Retallack, G.J., Greenhouse crises of the past 300 million years, Geol. Soc. Am. Bull., 2009, vol. 121, no. 9/10, pp. 1441–1455.

    Article  Google Scholar 

  98. Retallack, G.J., Permian and Triassic greenhouse crises, Gondwana Res., 2013, vol. 24, pp. 90–103.

    Article  Google Scholar 

  99. Ringham, M.C., Hoke, G.D., Huntington, K.W., and Aranibar, J.N., Influence of vegetation type and site-to site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32–34°S), Earth and Planet. Lett., 2016, vol. 440, pp. 1–11.

    Article  Google Scholar 

  100. Royer, D.L., Depth to pedogenic carbonate horizon as a paleoprecipitation indicator?, Geology, 1999, vol. 27, pp. 1123–1127.

    Article  Google Scholar 

  101. Salomons, W. and Mook, W.G., Isotope geochemistry of carbonate dissolution and reprecipitation in soils, Soil Sci. Soc. Am. J., 1976, vol. 122, pp. 15–24.

    Article  Google Scholar 

  102. Schobben, M., Joachimski, M.M., Korn, D., et al., Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction, Gondwana Res., 2013, vol. 26, no. (2), pp. 675–683.

    Article  Google Scholar 

  103. Shen, S.-Z., Crowley, J.L., Wang, Y., et al., Calibrating the end-Permian mass extinction, Science, 2011, vol. 334, pp. 1367–72.

    Article  Google Scholar 

  104. Shen, S.-Z., Cao, C.-Q., Zhang, H., et al., High resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran, Earth Planet. Sci. Lett., 2013, vol. 375, pp. 156–165.

    Article  Google Scholar 

  105. Spencer, Ch. and Kim, S.-T., Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques, Geosci. J., 2015, vol. 19, no. 2, pp. 357–374.

    Article  Google Scholar 

  106. Stevevson, B.A., Kelly, E.F., McDonald, E.V., and Busacca, A.J., The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA, Geoderma, 2005, vol. 124, pp. 37–47.

    Article  Google Scholar 

  107. Strok, N.I. and Trofimova, I.S., Ind\fluence of the UralianI and Baltic Provenances on the formation of the Upper Permian rocks in the Moscow Syneclise, Byull. Mosk. O-va Ispyt. Prir., Otd.Geol., 1976, vol. 51, no. 1, pp. 100–110.

    Google Scholar 

  108. Suchý, V., The “white beds”—a fossil caliche of the Barrandian area: Its origin and paleoenvironmental significance, J. Cztch. Geol. Soc., 2002, vol. 47, pp. 45–54.

    Google Scholar 

  109. Sun, Y., Joachimski, M.M., Wignall, P.B., et al., Lethally hot temperatures during the Early Triassic greenhouse, Science, 2012, vol. 338, pp. 366–370.

    Article  Google Scholar 

  110. Svensen, H., Planke, S., Polozov, A.G., et al., Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 490–500.

    Article  Google Scholar 

  111. Tabor, N.J., Moñtaсez I.P., Steiner, M.B., and Schwindt, D., δ13C values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 252, pp. 370–381.

    Article  Google Scholar 

  112. Takahashi, S., Kaiho, K., Oba, M., and Kakegawa, T., A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010, vol. 292, pp. 532–539.

    Article  Google Scholar 

  113. Twitchett, R.J., Looy, C.V., Morante, R., et al., Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis, Geology, 2001, vol. 29, no. 4, pp. 351–354.

    Article  Google Scholar 

  114. Verkhnepermskie i nizhnetriasovye otlozheniya Moskovskoi sineklizy (Upper Permian and Lower Triassic Rocks in the Moscow Syneclise), Moscow: Nedra, 1984.

  115. Verrecchia, E.P., Freytet, P., Verrecchia, K.E., and Dumont, J.-L., Spherulites in calcrete laminal crusts: biogenic CaCO3 precipitation as a mjor contributor to crust formation, J. Sediment. Res., 1995, vol. 55, pp. 670–700.

    Google Scholar 

  116. Wei, H., Chen, D., Yu, H., and Wang, J., End-guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan, Earth Sci. China,Ser. B, 2012, vol. 55, no. 9, pp. 1480–1488.

    Google Scholar 

  117. Wignall, P.B., Sun, Y., Bond, D.P., et al., Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China, Science, 2009, vol. 324, pp. 1179–1182.

    Article  Google Scholar 

  118. Yakimenko, E.Yu., Targul’yan, V.O., Chumakov, N.M., et al., Paleosols in Upper Permian sedimentary rocks, Sukhona River (Severnaya Dvina Basin), Lithol. Miner. Resour., 2000, no. 4, pp. 331–344.

    Article  Google Scholar 

  119. Yan, D., Zhang, L., and Qiu, Z., Carbon and sulfur isotopic fluctuations associated with the end-Guadalupian mass extinction in South China, Gondwana Res., 2013, vol. 24, no. 3/4, pp. 1276–1282.

    Article  Google Scholar 

  120. Yaroshenko, O.P., Reorganization of palynofloras across the Permian–Triassic Boundary (Examples from the East European Platform), Stratigr. Geol. Correl., 2005, vol. 13, no. 4, pp. 408–415.

    Google Scholar 

  121. Zakharov, Yu.D., Byakov, A.S., and Khorachek, M., Global correlation of basal Triassic layers in the light of the first carbon isotope data on the Permian–Triassic boundary in Northeast Asia, Russ. J. Pac. Geol., 2014, vol. 33, no. 1, pp. 1–17.

    Article  Google Scholar 

  122. Zamanian, K., Pustovoytov, K., and Kuziakov, Y., Pedogenic carbonates: Forms and formation process, Earth-Sci. Rev., 2016, vol. 157, pp. 1–17.

    Article  Google Scholar 

Download references

Funding

This work was carried out in accordance with the State Task of the Geological Institute, Russian Academy of Sciences (project no. 0135-2019-0070) and the Russian Foundation for Basic Research (project no. 16-05-00706 a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kuleshov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleshov, V.N., Arefiev, M.P. & Pokrovsky, B.G. Isotope Characteristics (δ13C, δ18O) of Continental Carbonates from Permian‒Triassic Rocks in the Northeastern Russian Plate: Paleoclimatic and Biotic Reasons and Chemostratigraphy. Lithol Miner Resour 54, 489–510 (2019). https://doi.org/10.1134/S0024490219060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490219060075

Keywords:

Navigation