Skip to main content
Log in

SIR-Type Epidemic Models as Block-Structured Markov Processes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This paper proposes a block-structured Markov process to describe the spread of epidemics of Susceptible-Infected-Removed (SIR) type. Our purpose is to determine the distribution of the final state of the process and of some other interesting measures of the dimension of the epidemic. The followed modeling approach proves to be simple and systematic. Its flexibility is underlined by the presentation of several specific models that extend the classical general epidemic. Finally, two numerical examples illustrate some of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackleh AS, Allen LJS (2005) Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discret Contin Dyn Syst, Ser B 5:175–188

    Article  MathSciNet  Google Scholar 

  • Albrecher H, Thonhauser S (2012) On optimal dividend strategies with a random time horizon. In: Cohen SN, Madan D, Siu TK, Yang H (eds) Stochastic processes, finance and control. A festschrift in honor of Robert Elliott. Advances in statistics, probability and actuarial science, vol 1. World Scientific, Singapore, pp 157–180

  • Artalejo JR, Economou A, Lopez-Herrero MJ (2013) Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J Math Biol 67:799–831

    Article  MathSciNet  Google Scholar 

  • Asmussen S, Avram F, Usabel M (2002) Erlangian approximations for finite-horizon ruin probabilities. ASTIN Bullet 32:267–281

    Article  MathSciNet  Google Scholar 

  • Bacaër N (2016) Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire. J Math Biol 73:847–866

    Article  MathSciNet  Google Scholar 

  • Ball F, O’Neill P (1993) A modification of the general stochastic epidemic motivated by AIDS modelling. Adv Appl Probab 25:39–62

    Article  MathSciNet  Google Scholar 

  • Ball F, O’Neill P (1994) Strong convergence of stochastic epidemics. Adv Appl Probab 265:629–655

    Article  MathSciNet  Google Scholar 

  • Ball F (2018) Susceptibility sets and the final outcome of collective Reed-Frost epidemics Methodol Comput Appl Probab, to appear

  • Billard L, Zhao Z (1993) The stochastic general epidemic model revisited and a generalization. IMA J Math Appl Med Biol 10:67–75

    Article  MathSciNet  Google Scholar 

  • Daley DJ, Gani J (1999) Epidemic modelling: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Daniels HE (1990) The time of occurrence of the maximum of a closed epidemic. In: Gabriel J-P, Lefèvre C, Picard P (eds) Stochastic processes in epidemic theory. Proceedings, Luminy 1988. Lecture notes in biomathematics 86. Springer, Berlin, pp 129–136

    Chapter  Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New York

    MATH  Google Scholar 

  • Dietz K (1979) Epidemiological interference of virus populations. J Math Biol 8:291–300

    Article  MathSciNet  Google Scholar 

  • Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environment. Math Biosci 266:10–14

    Article  MathSciNet  Google Scholar 

  • El Maroufy H, Omari L, Taib Z (2012) Transition probabilities for generalized SIR epidemic model. Stoch Model 28:15–28

    Article  MathSciNet  Google Scholar 

  • El Maroufy H, Driss K, Taib Z (2016) Final outcome probabilities for SIR epidemic model. Commun Stat - Theory Methods 45:2426–2437

    Article  MathSciNet  Google Scholar 

  • Feng R, Garrido J (2011) Actuarial applications of epidemiological models. North Amer Actuar J 15:112–136

    Article  MathSciNet  Google Scholar 

  • He Q-M (2014) Fundamentals of matrix-analytic methods. Springer, New York

    Book  Google Scholar 

  • Kendall WS, Saunders IW (1983) Epidemics in competition II: the general epidemic. J R Stat Soc, Series B 45:238–244

    MathSciNet  MATH  Google Scholar 

  • Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. ASA and SIAM, Philadelphia

    Book  Google Scholar 

  • Lefèvre C, Simon M (2016) SIR epidemics with stages of infection. Adv Appl Probab 48:768–791

    Article  MathSciNet  Google Scholar 

  • Lefèvre C, Picard P (2017) On the outcome of epidemics with detections. J Appl Probab 54:890–904

    Article  MathSciNet  Google Scholar 

  • Lefèvre C, Picard P, Simon M (2017) Epidemic risk and insurance coverage. J Appl Probab 54:286–303

    Article  MathSciNet  Google Scholar 

  • Lefèvre C, Simon M (2018) Cross-infection in epidemics spread by carriers. Stoch Model 34:166–185

    Article  MathSciNet  Google Scholar 

  • López-Garcia M (2016) Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Math Biosci 271:42–61

    Article  MathSciNet  Google Scholar 

  • Neuts MF, Li J-M (1996) An algorithmic study of S-I-R stochastic epidemic models. In: Heyde CC, Prohorov YV, Pyke R, Rachev ST (eds) Athens conference on applied probability and time series analysis. Applied probability in honor of J.M. Gani, vol 1. Springer, New York, pp 295–306

    Chapter  Google Scholar 

  • Picard P, Lefèvre C (1993) Distribution of the final state and severity of epidemics with fatal risk. Stochastic Processes and their Applications 48:277–294

    Article  MathSciNet  Google Scholar 

  • Picard P, Lefèvre C (1999) On the algebraic structure in Markovian processes of death and epidemic types. Adv Appl Probab 31:742–757

    Article  MathSciNet  Google Scholar 

  • Saunders IW (1981) Epidemics in competition. J Math Biol 11:311–318

    Article  MathSciNet  Google Scholar 

  • Severo NC (1969) Generalizations of some stochastic epidemic models. Math Biosci 4:395–402

    Article  MathSciNet  Google Scholar 

  • Trapman P, Bootsma MCJ (2009) A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection. Math Biosci 219:15–22

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for useful comments and suggestions. M. Simon acknowledges the support of the Australian Research Council Center of Excellence for Mathematical and Statistical Frontiers (ACEMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Lefèvre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefèvre, C., Simon, M. SIR-Type Epidemic Models as Block-Structured Markov Processes. Methodol Comput Appl Probab 22, 433–453 (2020). https://doi.org/10.1007/s11009-019-09710-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-019-09710-y

Keywords

Mathematics Subject Classification (2010)

Navigation