Skip to main content
Log in

The model checking fingerprints of CTL operators

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

The aim of this study is to understand the inherent expressive power of CTL operators. We investigate the complexity of model checking for all CTL fragments with one CTL operator and arbitrary Boolean operators. This gives us a fingerprint of each CTL operator. The comparison between the fingerprints yields a hierarchy of the operators that mirrors their strength with respect to model checking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauland, M., Mundhenk, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The tractability of model checking for LTL: the good, the bad, and the ugly fragments. TOCL 12(2), 26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. LMCS 5(1), 1–21 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Beyersdorff, O., Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Vollmer, H.: Model checking CTL is almost always inherently sequential. LMCS 7(2), 1–21 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT 34(4), 38–52 (2003)

    Article  Google Scholar 

  6. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandra, A.K., Tompa, M.: The complexity of short two-person games. Discrete Appl. Math. 29(1), 21–33 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarke, E., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. TOPLAS 8(2), 244–263 (1986)

    Article  MATH  Google Scholar 

  9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronisation skeletons using branching time temporal logic. In: Logic of Programs, LNCS, vol. 131, pp. 52–71. Springer (1981)

  10. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control 64(1–3), 2–21 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time. J. ACM 33(1), 151–178 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM J. Comput. 29(1), 132–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. JCSS 18, 194–211 (1979)

    MATH  Google Scholar 

  14. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci. 22(3), 384–406 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krebs, A., Meier, A., Mundhenk, M.: The model checking fingerprints of CTL operators. In: Grandi, F., Lange, M., Lomuscio, A. (eds.) 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015, Kassel, Germany, pp. 101–110. IEEE (2015)

  16. Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded \(\mu \)-calculus. In: Voronkov, A. (ed.) 18th International Conference on Automated Deduction (CADE) Copenhagen, Denmark, pp. 423–437. Springer (2002)

  17. Laroussinie, F.: About the expressive power of CTL combinators. IPL 54(6), 343–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meier, A.: On the complexity of modal logic variants and their fragments. Ph.D. thesis, Leibniz Universität Hannover, Institut für Theoretische Informatik (2011)

  19. Meier, A., Müller, J.S., Mundhenk, M., Vollmer, H.: Complexity of model checking for logics over Kripke models. Bull. EATCS 108, 50–89 (2012)

    MATH  Google Scholar 

  20. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfiability for fragments of CTL and \(\text{ CTL }^*\). IJFCS 20(05), 901–918 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: Erratum: The complexity of satisfiability for fragments of CTL and \({\text{ CTL }}^*\). Int. J. Found. Comput. Sci. 26(8), 1189 (2015). https://doi.org/10.1142/S012905411592001X

    Article  MATH  Google Scholar 

  22. Mundhenk, M., Weiß, F.: The complexity of model checking for intuitionistic logics and their modal companions. In: Proceedings of RP’10, LNCS, vol. 6227, pp. 146–160. Springer (2010)

  23. Mundhenk, M., Weiß, F.: An AC\(^1\)-complete model checking problem for intuitionistic logic. Comput. Complex. 23(4), 637–669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  25. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th FOCS, pp. 46–57. IEEE Computer Society Press (1977)

  26. Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  27. Pratt, V.R.: A near-optimal method for reasoning about action. JCSS 20(2), 231–254 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Prior, A.N.: Time and Modality. Clarendon Press, Oxford (1957)

    MATH  Google Scholar 

  29. Prior, A.N.: Past, Present, and Future. Clarendon Press, Oxford (1967)

    Book  MATH  Google Scholar 

  30. Schnoebelen, P.: The complexity of temporal logic model checking. In: AiML, pp. 393–436. King’s College Publications (2002)

  31. Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of programs: preliminary report. In: STOC ’85, LNCS, pp. 240–251 (1985)

  32. Vardi, M.Y., Stockmeyer, L.: Lower bound in full (2EXPTIME-hardness for \(\text{ CTL }^*\)-SAT). http://www.cs.rice.edu/~vardi/papers/ctl_star_lower_bound.pdf (1985). Accessed 31 July 2018

Download references

Acknowledgements

The authors thank Stephan Fischer for helpful discussions on the proof of Lemma 4 and Martin Krejka for a simplification of the proof of Lemma 14. The authors also thank the referees for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Meier.

Additional information

Andreas Krebs acknowledges support by the German Research Foundation DFG Project KR 4042/2. Arne Meier acknowledges support by the German Research Foundation DFG Project ME 4279/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebs, A., Meier, A. & Mundhenk, M. The model checking fingerprints of CTL operators. Acta Informatica 56, 487–519 (2019). https://doi.org/10.1007/s00236-018-0326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-018-0326-9

Navigation