Skip to main content
Log in

Gold@Silver@Gold Core Double-Shell Nanoparticles: Synthesis and Aggregation-Enhanced Two-Photon Photoluminescence Evaluation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A facile, straightforward, and low-cost method is proposed to synthesize gold@silver@gold core double-shell nanoparticles. The technique is a seed-mediated growth protocol that contains four steps of (1) gold seed synthesis, (2) gold seed growth, (3) silver layer coating through silver salt reduction, and (4) gold layer deposition via gold precursor reduction. The prepared nanoparticles had a narrow size distribution and the average particle size of 28 ± 1 nm. Cysteine was introduced to the nanoparticles solution as a coupling agent to assemble nanoparticles. Aggregation-induced two-photon photoluminescence enhancement of three types assembled nanoparticles, i.e., gold@silver@gold, gold@silver, and gold nanoparticles, was studied. It was observed that the assembled core double-shell nanoparticles presented huge enhancement in two-photon photoluminescence signal in comparison with two other nanoparticles. Moreover, the gold@silver@gold nanoparticle is a stable and biocompatible plasmonic nanosystem. This paper provides a novel candidate for two-photon photoluminescence excitation sensing and imaging for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Theoretical considerations. In: Toennies JP (ed) Optical properties of metal clusters. Springer, Berlin, pp 13–201

    Chapter  Google Scholar 

  2. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251

    Article  CAS  Google Scholar 

  3. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    Article  CAS  PubMed  Google Scholar 

  4. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103

    Article  CAS  Google Scholar 

  5. Wang P, Huang B, Dai Y, Whangbo M (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825

    Article  CAS  PubMed  Google Scholar 

  6. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390–1-1247390–10

    Article  CAS  PubMed  Google Scholar 

  7. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    Article  CAS  Google Scholar 

  8. Mishra YK, Adelung R, Kumar G, Elbahri M, Mohapatra S, Singhal R, Tripathi A, Avasthi DK (2013) Formation of self-organized silver nanocup-type structures and their plasmonic absorption. Plasmonics 8:811–815

    Article  CAS  Google Scholar 

  9. Mishra YK, Mohapatra S, Kabiraj D, Mohanta B, Lalla NP, Pivin JC, Avasthi DK (2007) Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scr Mater 56:629–632

    Article  CAS  Google Scholar 

  10. Mishra YK, Mohapatra S, Singhal R, Avasthi DK, Agarwal DC, Ogale SB (2008) Au–ZnO: a tunable localized surface plasmonic nanocomposite. Appl Phys Lett 92:043107–1-043107–3

    Article  CAS  Google Scholar 

  11. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1904

    Article  CAS  PubMed  Google Scholar 

  12. Motl NE, Smith AF, DeSantisa CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43:3813–3994

    Article  Google Scholar 

  13. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  PubMed  Google Scholar 

  14. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  15. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7

    Article  CAS  PubMed  Google Scholar 

  16. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  17. Yuan P, Ma R, Gao N, Garai M, Xu QH (2015) Plasmon coupling enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in nuclease assay. Nanoscale 7:10233–10239

    Article  CAS  PubMed  Google Scholar 

  18. Guan Z, Gao N, Jiang X et al (2013) Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy. J Am Chem Soc 135:7272–7277

    Article  CAS  PubMed  Google Scholar 

  19. Jiang C, Zhao T, Li S, Gao N, Xu QH (2013) Highly sensitive two-photon sensing of thrombin in serum using aptamers and silver nanoparticles. ACS Appl Mater Interfaces 5:10853–10857

    Article  CAS  PubMed  Google Scholar 

  20. Yuan P, Ding X, Guan Z et al (2014) Plasmon-coupled gold nanospheres for two-photon imaging and photoantibacterial activity. Adv Healthc Mater 4:674–678

    Article  CAS  PubMed  Google Scholar 

  21. Yuan P, Ma R, Guan Z, Gao N, Xu QH (2014) Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection. ACS Appl Mater Interfaces 6:13149–13156

    Article  CAS  PubMed  Google Scholar 

  22. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Guyot-sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  24. Kim Y, Lee H, Kim H, Lim T (2010) PtRu nano-dandelions on thiolated carbon nanotubes: a new synthetic strategy for supported bimetallic core–shell clusters on the atomic scale. Chem Commun 46:2085–2087

    Article  CAS  Google Scholar 

  25. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934

    Article  CAS  PubMed  Google Scholar 

  26. Baek S-W, Park G, Noh J, Cho C, Lee CH, Seo MK, Song H, Lee JY (2014) Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 8:3302–3312

    Article  CAS  PubMed  Google Scholar 

  27. Alonso J, Diamant R, Castillo P et al (2009) Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Appl Surf Sci 255:4933–4937

    Article  CAS  Google Scholar 

  28. Su F, Wang T, Lv R, Zhang J, Zhang P, Lu J, Gong J (2013) Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale 5:9001–9009

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Liu L, Fu X, Zhu Z (2013) Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens Bioelectron 42:23–30

    Article  CAS  PubMed  Google Scholar 

  30. Cao Y, Yuan R, Chai Y, Mao L, Niu H, Liu H, Zhuo Y (2012) Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling. Biosens Bioelectron 31:305–309

    Article  CAS  PubMed  Google Scholar 

  31. Yin Y, Li Z, Zhong Z et al (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Article  CAS  Google Scholar 

  32. Romanyuk A, Oelhafen P (2007) Formation and electronic structure of TiO2-Ag interface. Sol Energy Mater Sol Cells 91:1051–1054

    Article  CAS  Google Scholar 

  33. Tanabe I, Tatsuma T (2012) Plasmonic manipulation of color and morphology of single silver nanospheres. Nano Lett 12:5418–5421

    Article  CAS  PubMed  Google Scholar 

  34. Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113:6573–6576

    Article  CAS  Google Scholar 

  35. Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B (2002) Seed-mediated growth of large, monodisperse core–shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun 2:144–145

    Article  CAS  Google Scholar 

  36. Srnová-Šloufová I, Lednický F, Gemperle A, Gemperlová J (2000) Core-shell (Ag) Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16:9928–9935

    Article  CAS  Google Scholar 

  37. Anh DTN, Singh P, Shankar C et al (2011) Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl Phys Lett 99:73107.1–73107.3

    Google Scholar 

  38. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  CAS  Google Scholar 

  39. Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, Wang J, Yan C (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun 18:1816–1818

  40. Sun Z, Ni W, Yang Z, Kou X, Li L, Wang J (2008) pH-controlled reversible assembly and disassembly of gold nanorods. Small 4:1287–1292

    Article  CAS  PubMed  Google Scholar 

  41. Garai M, Zhang T, Gao N, Zhu H, Xu QH (2016) Single particle studies on two-photon photoluminescence of gold nanorod-nanosphere heterodimers. J Phys Chem C 120:11621–11630

    Article  CAS  Google Scholar 

  42. Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I (2013) Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29:15076–15082

    Article  CAS  PubMed  Google Scholar 

  43. Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y (2010) Au@Ag core@shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4:6725–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han MY (2012) Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84:255–261

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez-González BAB, Watanabe M, Kiely CJ, Marzán LML (2005) Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J Mater Chem 15:1755–1759

    Article  CAS  Google Scholar 

  46. Halas NJ, Lal S, Chang W et al (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  PubMed  Google Scholar 

  47. Jiang R, Chen H, Shao L et al (2012) Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag Shell) nanorods. Adv Mater 24:1–8

    Article  Google Scholar 

  48. Gao N, Chen Y, Li L, Guan Z, Zhao T, Zhou N, Yuan P, Yao SQ, Xu QH (2014) Shape-dependent two-photon photoluminescence of single gold nanoparticles. J Phys Chem C 118:13904–13911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Q.H. Xu at NUS is appreciated for providing synthesis and characterization facilities. Dr. M. Garai and Mr. D. Lyu at NUS are appreciated for providing help in the synthesis and TPPL spectra measurements.

Funding

This work was financially supported by Iran’s National Elites Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shervin Daneshvar e Asl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshvar e Asl, S., Sadrnezhaad, S.K. Gold@Silver@Gold Core Double-Shell Nanoparticles: Synthesis and Aggregation-Enhanced Two-Photon Photoluminescence Evaluation. Plasmonics 15, 409–416 (2020). https://doi.org/10.1007/s11468-019-01041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01041-5

Keywords

Navigation