Skip to main content
Log in

From thermonuclear fusion to Hamiltonian chaos

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

This paper aims at a historical and pedagogical presentation of some important contributions of the research on thermonuclear fusion by magnetic confinement to the study of Hamiltonian chaos. This chaos is defined with the help of Poincaré maps on a simple two-wave Hamiltonian system. A simple criterion for computing the transition to large scale chaos is introduced. A renormalization group approach for barriers in phase space is described pictorially. The geometrical structure underlying chaos is introduced, and then described in the adiabatic limit of Hamiltonian chaos. The issue of chaotic transport is discussed in simple limit cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullaev, S.S 2002. “The Hamilton-Jacobi method and Hamiltonian maps”. J. Phys. A: Math. Gen. 35: 2811–2832.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Abdullaev, S.S 2004a. “On mapping models of field lines in a stochastic magnetic field”. Nucl. Fusion 44: S12–S27.

    Article  ADS  Google Scholar 

  3. Abdullaev, S.S 2004b. “Canonical maps near separatrix in Hamiltonian systems”. Phys. Rev. E 70: 046202.

    Article  ADS  MathSciNet  Google Scholar 

  4. Abdullaev, S.S. 2006. Construction of Mappings for Hamiltonian Systems and Their Applications. Berlin Heidelberg: Springer-Verlag.

  5. Abdullaev, S.S and G.M. Zaslavsky. 1995. “Self-similarity of stochastic magnetic field lines near the X-point”. Phys. Plasmas 2: 4533–4540.

    Article  ADS  MathSciNet  Google Scholar 

  6. Arioli, G and H. Koch. 2010. “The Critical Renormalization Fixed Point for Commuting Pairs of Area-Preserving Maps”. Commun. Math. Phys. 295: 415–429.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Arnold, V.I 1963a. “Proof of a Theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”. Russian Math. Survey 18: 13–40.

    Article  ADS  Google Scholar 

  8. Arnold, V.I. 1963b. “Small denominators and problems of stability of motion in classical and celestial mechanics”. Russian Math. Survey 18:6: 85–191.

  9. Aubry, S. 1978. The new concept of transitions by breaking of analyticity in a crystallographic model in “Solitons and Condensed Matter Physics”: 264–277. Berlin Heidelberg: Springer-Verlag.

  10. Bazzani, A, C. Frye, M. Giovannozzi and C. Hernalsteens. 2014. “Analysis of adiabatic trapping for quasi-integrable area-preserving maps”. Phys. Rev. E 89: 042915–1-14.

    Article  ADS  Google Scholar 

  11. Bellissard, J., O. Bohigas, G. Casati and D.L. Shepelyansky. 1999. “A pioneer of chaos”. Physica D 131: viii–xv.

  12. Bénisti, D and D.F. Escande. 1998. “Finite range of large perturbations in hamiltonian dynamics”. J. Stat. Phys. 92: 909–972.

    Article  ADS  MATH  Google Scholar 

  13. Bénisti, D and D.F. Escande. 1998. “Nonstandard diffusion properties of the standard map”. Phys. Rev. Lett. 80: 4871–4874.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bénisti, D and D.F. Escande. 1997. “Origin of diffusion in hamiltonian dynamics”. Phys. Plasmas 4: 1576–1581.

    Article  ADS  MathSciNet  Google Scholar 

  15. Bruhwiler, D.L and J.R. Cary. 1989. “Diffusion of particles in a slowly modulated wave”. Physica D 40: 265–282.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cary, J.R, D.F. Escande and A.D. Verga. 1990. “Non quasilinear diffusion far from the chaotic threshold”. Phys. Rev. Lett. 65: 3132–3135.

    Article  ADS  Google Scholar 

  17. Cary, J.R and R.T. Skodje. 1989. “Phase change between separatrix crossings”. Physica D 36: 287–316.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cary, J.R and S.G. Shasharina. 1997. “Omnigenity and quasihelicity in helical plasma confinement systems”. Phys. Plasmas 4: 3323–3333.

    Article  ADS  MathSciNet  Google Scholar 

  19. Chandre, C and H.R. Jauslin. 2002. “Renormalization-group analysis for the transition to chaos in Hamiltonian systems”. Phys. Reports 365: 1–64.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chirikov, B.V 1959. “Resonance processes in magnetic traps”. At. Energ. 6: 630–638 [Engl. Transl. 1960, J. Nucl. Energy Part C: Plasma Phys. 1: 253–260]

    Google Scholar 

  21. Chirikov, B.V. 1969. “Research concerning the theory of nonlinear resonance and stochasticity”. Preprint N 267, Institute of Nuclear Physics, Novosibirsk (1969) [Engl. Transl., CERN Trans. 71–40, Geneva, October (1971)]

  22. Chirikov, B.V 1979. “A universal instability of many-dimensional oscillator systems’. Phys. Reports 52: 263–379.

    Article  ADS  MathSciNet  Google Scholar 

  23. Chirikov, B.V and F.M. Izrailev. 1966. “Statistical properties of a non-linear string”. Dokl. Akad. Nauk SSSR 166: 57–59. Sov. Phys. Dokl. 11: 30–32.

    MATH  Google Scholar 

  24. Chirikov, B.V.F.M. Izrailev and V.A. Tayursky. 1973. “Numerical experiments on statistical behavior of dynamical systems with a few degrees of freedoms”. Comput. Phys. Commun. 5: 11–16.

    Article  ADS  Google Scholar 

  25. Codaccioni, J.P, F. Doveil and D.F. Escande. 1982. “Stochasticity threshold for Hamiltonians with zero or one primary resonance”. Phys. Rev. Lett. 49: 1879–1883.

    Article  ADS  MathSciNet  Google Scholar 

  26. del-Castillo-Negrete, D, J.M. Greene and P.J. Morrison. 1997. “Renormalization and transition to chaos in area preserving nontwist maps”. Physica D 100: 311–329.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Delshams, A and R. De la Llave. 2000. “KAM theory and a partial justification of Greene’s criterion for nontwist maps”. SIAM J. Math. Anal. 31: 1235–1269.

    Article  MathSciNet  MATH  Google Scholar 

  28. Dewar, R.L 1970. “Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium”. Phys. Fluids 13: 2710–2720.

    Article  ADS  MATH  Google Scholar 

  29. Drummond, W.E and D. Pines. 1962. “Nonlinear stability of plasma oscillations”. Nuclear Fusion Suppl. 3: 1049–1057.

    Google Scholar 

  30. Dupree, T.H 1966. “A perturbation theory for strong plasma turbulence”. Phys. Fluids 9: 1773–1782.

    Article  ADS  MathSciNet  Google Scholar 

  31. Elskens, Y 2012. “Gaussian convergence for stochastic acceleration of N particles in the dense spectrum limit”. J. Stat. Phys. 148: 591–605.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Elskens, Y and D.F. Escande. 1991. “Slowly pulsating separatrices sweep homoclinic tangles where islands must be small : an extension of classical adiabatic theory”. Nonlinearity 4: 615–667.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Elskens, Y and D.F. Escande. 1993. “Infinite resonance overlap : a natural limit of Hamiltonian chaos”. Physica D 62: 66–74.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Elskens, Y. and D.F. Escande. 2003. “Microscopic dynamics of plasmas and chaos”.Institute of Physics, Bristol.

  35. Elskens, Y and E. Pardoux. 2010. “Diffusion limit for many particles in a periodic stochastic acceleration field”. Ann. Appl. Prob. 20: 2022–2039.

    Article  MathSciNet  MATH  Google Scholar 

  36. Escande, D.F 1982a. “Renormalization for stochastic layers”. Physica D 6: 119–125.

    Article  ADS  MathSciNet  Google Scholar 

  37. Escande, D.F 1985. “Stochasticity in classical hamiltonian systems: universal aspects”. Phys. Rep. 121: 165–261.

    Article  ADS  MathSciNet  Google Scholar 

  38. Escande, D.F. 2013. How to face the complexity of plasmas? in “From Hamiltonian Chaos to Complex Systems”: 109–157. Berlin Heidelberg: Springer-Verlag.

  39. Escande, D.F 2016. “Contributions of plasma physics to chaos and nonlinear dynamics”. Plasma Phys. Control. Fusion 58: 113001 (17 pp). Also https://doi.org/arxiv.org/abs/1604.06305

    Article  ADS  Google Scholar 

  40. Escande, D.F and F. Doveil. 1981a. “Renormalization method for the onset of stochasticity in a hamiltonian system”. Phys. Lett. A 83: 307–310.

    Article  ADS  MathSciNet  Google Scholar 

  41. Escande, D.F, and F. Doveil. 1981b. “Renormalization method for computing the threshold of large-scale stochastic instability in two degrees of freedom hamiltonian systems”. J. Stat. Phys. 26: 257–284.

    Article  ADS  MathSciNet  Google Scholar 

  42. Escande, D.F and Y. Elskens. 2002b. “Proof of quasilinear equations in the chaotic regime of teh weak warm beam instability”. Phys. Lett. A 302: 110–118.

    Article  ADS  Google Scholar 

  43. Escande, D.F, H. Kantz, R. Livi and S. Ruffo. 1994. “Self consistent check of the validity of Gibbs calculus using dynamical variables”. J. Stat. Phys. 76: 605–626.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Escande, D.F, M.S. Mohamed-Benkadda and F. Doveil. 1984. “Threshold of global stochasticity”. Phys. Lett. A 101: 309–313.

    Article  ADS  MathSciNet  Google Scholar 

  45. Escande, D.F and F. Sattin. 2007. “When can the Fokker-Planck equation describe anomalous or chaotic transport?”. Phys. Rev. Lett. 99: 185005-1-4.

    Article  ADS  Google Scholar 

  46. Escande, D.F and F. Sattin. 2008. “When can the Fokker-Planck equation describe anomalous or chaotic transport? Intuitive aspects”. Plasma Phys. Control. Fusion 50: 124023 (8 p).

    Article  ADS  Google Scholar 

  47. Froeschlé, C 1970. “Numerical studies of dynamical systems with three degrees of freedom”. Astron. and Astrophys. 9: 15–28.

    ADS  MATH  Google Scholar 

  48. Gonzalez-Enriquez, A, A. Haro and R. De la Llave. 2014. “Singularity Theory for Non-Twist KAM Tori”. Mem. Amer. Math. Soc. 227: 1067.

    MathSciNet  MATH  Google Scholar 

  49. Greene, J.M 1979. “A Method for Computing the Stochastic Transition”. J. Math. Phys. 20: 1183–1201.

    Article  ADS  Google Scholar 

  50. Greene, J.M, R.S. MacKay and J. Stark. 1986. “Boundary circles for area-preserving maps”. Physica D 21: 267–295.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hénon, M and C. Heiles. 1964. “The applicability of the third integral of motion: Some numerical experiments”. Astrophys. J. 69: 73–79.

    MathSciNet  ADS  Google Scholar 

  52. Hénon, M 1966. “Sur la topologie des lignes de courant dans un cas particulier”. C.R. Seances Acad. Sci. A 262: 312–314.

    Google Scholar 

  53. Howard, J.E and S.M. Hohs. 1984. “Stochasticity and reconnection in Hamiltonian systems”. Phys. Rev. A 29: 418–421.

    Article  ADS  MathSciNet  Google Scholar 

  54. Koch, H 2004. “A renormalization group fixed point associated with the breakup of golden invariant tori”. Discrete and Continuous Dynamical Systems-Series A 11: 881–909.

    Article  MathSciNet  MATH  Google Scholar 

  55. Kolmogorov, A.N 1954. “On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian”. Dokl. Akad. Nauk. SSR 98: 527–530.

    MATH  Google Scholar 

  56. Kolomenskii, A.A 1960. “On the electrodynamics of a gyrotropic medium”. Zh. Tekh. Fiz. 30: 1347 [Engl. Transl. 1960 Sov. Phys. Tech. Phys. 5: 1278].

    Google Scholar 

  57. Kruskal, M.D. 1952. “Some Properties of Rotational Transforms” Project Matterhorn Report NY0-998, PM-S-5, Princeton University Forrestal Research Center, National Technical Information Service Doc. No. PB200-100659.

  58. Kruskal, Martin 1962. “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic”. J. Math. Phys. 3: 806–828.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Krylov, N. and N.N. Bogolyubov. 1936. Introduction to nonlinear mechanics. in Russian [Translation: 1974 Princeton University Press, Princeton].

  60. Laval, G and D. Pesme. 1984. “Self-consistency effects in quasilinear theory : a model for turbulent trapping”. Phys. Rev. Lett. 53: 270–273.

    Article  ADS  Google Scholar 

  61. MacKay, R.S 1983. “A renormalisation approach to invariant circles in area-preserving maps”. Physica D 7: 283–300.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. MacKay, R.S, J.D. Meiss and I.C. Percival. 1984a. “Stochasticity and transport in Hamiltonian systems”. Phys. Rev. Lett. 52: 697–700.

    Article  ADS  MathSciNet  Google Scholar 

  63. MacKay, R.S, J.D. Meiss and I.C. Percival. 1987. “Resonances in area preserving maps”. Physica D 27: 1–20.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. MacKay, R.S 1989. “A criterion for non-existence of invariant tori for Hamiltonian systems”. Physica D 36: 64–82.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. MacKay, R.S. 1995. “Three topics in Hamiltonian dynamics”. Dynamical Systems and Chaos. Singapore: World Scientific, edited by Y. Aizawa, S. Saito, K. Shiraiwa, Vol. 2, pp. 34–43.

  66. Meiss, J.D 2015. “Thirty years of turnstiles and transport”. Chaos 25: 097602-1-16.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Meiss, J.D, J.R. Cary, C. Grebogi, J.D. crawford, A.N. Kaufman and H.D. Abarbanel. 1983. “ Correlations of periodic, area-preserving maps”. Physica D 6: 375–384.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Melekhin, V.N 1975. “Phase dynamics of particles in a microtron and the problem of stochastic instability of nonlinear systems”. Zh. Eksp. Teor. Fiz. 68: 1601–1613.

    Google Scholar 

  69. Menyuk, C.R 1985. “Particle motion in the field of a modulated wave”. Phys. Rev. A, 31: 3282–3290.

    Article  ADS  Google Scholar 

  70. Morrison, P.J 2000. “Magnetic field lines, Hamiltonian dynamics, and nontwist systems”. Phys. Plasmas 7: 2279–2289.

    Article  ADS  MathSciNet  Google Scholar 

  71. Moser, J.K 1962. “On invariant curves of area-preserving mappings of an annulus”. Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1: 1–20.

    MathSciNet  MATH  Google Scholar 

  72. Neishtadt, A.I, V.V. Sidorenko and D.V. Treschev. 1997. “Stable periodic motion in the problem on passage through a separatrix”. Chaos 7: 1–11.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Ottaviani, M 1992. “Scaling laws of test particle transport in twodimensional turbulence”. Europhys. Lett. 20: 111–116.

    Article  ADS  Google Scholar 

  74. Percival, I.C. 1980. Variational principles for invariant tori and cantori in “American Institute of Physics Conference Series” 57: 302–310. Berlin Heidelberg: Springer-Verlag.

  75. Rechester, A.B and T.H. Stix. 1976. “Magnetic Braiding Due to Weak Asymmetry”. Phys. Rev. Lett. 36: 587–591.

    Article  ADS  Google Scholar 

  76. Rosenbluth, M.N, R.Z. Sagdeev and J.B. Taylor. 1966. “Destruction of magnetic field surfaces by magnetic field irregularities”. Nucl. Fusion 6: 297–300.

    Article  Google Scholar 

  77. Tsunoda, S.I, F. Doveil and J.H. Malmberg. 1991. “Experimental test of quasilinear theory”. Phys. Fluids B 3: 2747–57

    Article  ADS  Google Scholar 

  78. Vedenov, A.A, E.P. Velikhov and R.Z. Sagdeev. 1962. “Quasilinear theory of plasma oscillations”. Nuclear Fusion Suppl. 2: 465–475.

    Google Scholar 

  79. Vlad, M, F. Spineanu, J.H. Misguich and R. Balescu. 1998. “Diffusion with intrinsic trapping in two-dimensional incompressible stochastic velocity fields”. Phys. Rev. E 58: 7359–7368.

    Article  ADS  Google Scholar 

  80. Vlad, M, F. Spineanu, J.H. Misguich, J.-D. Reuss, R. Balescu, K. Itoh and S.-I. Itoh. 2004. “Lagrangian versus Eulerian correlations and transport scaling”. Plasma Phys. Control. Fusion 46: 1051–1063.

    Article  ADS  Google Scholar 

  81. Vlad, M, F. Spineanu and S. Benkadda. 2006. “Impurity pinch from a ratchet process”. Phys. Rev. Lett. 96: 085001.

    Article  ADS  Google Scholar 

  82. Vlad, M and F. Spineanu. 2015. “Trajectory statistics and turbulence evolution”. Chaos, Solitons and Fractals 81: 463–472.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Zaslavsky, G.M and S.S. Abdullaev. 1995. “Scaling properties and anomalous transport of particles inside the stochastic layer”. Phys. Rev. E 51: 3901–3910.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Escande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escande, D.F. From thermonuclear fusion to Hamiltonian chaos. EPJ H 43, 397–420 (2018). https://doi.org/10.1140/epjh/e2016-70063-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2016-70063-5

Navigation