Skip to main content

Advertisement

Log in

QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A population of 206 recombinant inbred lines (RILs F9–F10) derived from wheat cross WL711/C306 was phenotyped for morpho-physiological traits such as flag leaf area (FLA), flag leaf length (FLL), flag leaf width (FLW), and cell membrane stability (CMS) under water deficit stress (WDS) environment. High yielding cultivar, WL711 had higher FLA than the medium yielding cultivar C306 across trials under both environments. Parent cultivar C306 maintained membrane integrity while WL711 showed higher membrane damage under WDS. The RIL population showed considerable variation, normal distribution and transgressive segregation for FLA, FLL, FLW and CMS under WDS. The genetic linkage map of WL711/C306 RIL population was constructed comprising of 346 markers. The total map distance was 4526.8 cM with an averaged interval of 12.9 cM between adjacent markers. Major consistent QTL for FLA, FLL, FLW, and CMS were identified on chromosomes 2DS and 3BS respectively in the WL711/C306 RIL population under WDS. The major QTL for FLA, qFLAWD.2D.1 which expressed in multiple environments and for CMS, qCMSWD.3B.3 and qCMSWD.3B.4, accounted for a large proportion of phenotypic variance (PV) with positive allele being contributed by C306, a drought resistant (DR) parent. QTL qFLAWD.2D.1 for FLA co-located with QTL for grain number (GN) and days to flowering (DTF) while QTL qCMSWD.3B.3 and qCMS.3B.4 co-located with QTL for grain yield and its components, days to flowering, canopy temperature and coleoptiles length as reported in our previous publications on the WL711/C306 population (Shukla et al. in Euphytica 203:449–467, 2015; Singh et al. in J Plant Biochem Biotechnol 24:324–330, 2015). Two candidate genes Ghd7 for grain yield and heading date and OsCDK4 for calcium dependent protein kinases were identified in the 2DS and 3BS QTL regions respectively on comparison with gene content of rice chromosomes 7 and 1 respectively. Hence, QTLs qFLAWD.2D.1 and qCMSWD.3B.3 are potential target regions for fine mapping and marker assisted selection for FLA and CMS respectively in wheat under water deficit environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

FLA:

Flag leaf area

CMS:

Cell membrane stability

QTL:

Quantitative trait loci

RIL:

Recombinant inbred lines

FLL:

Flag leaf length

FLW:

Flag leaf width

GY:

Grain yield

References

  • Alqudah AM, Youssef HM, Graner A, Schnurbusch T (2018) Natural variation and genetic make-up of leaf blade area in spring barley. Theor Appl Genet 131:873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Dolores SM (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012a) CDPK-mediated abiotic stress signalling. Plant Signal Behav 7:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M et al (2012b) A rice calcium dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Babu RC (2010) Breeding for drought resistance in rice: an integrated view from physiology to genomics. Electron J Plant Breed 1:1133–1141

    Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Barakat MN, Al-Doss AA, Moustafa KA, Elshafei AA, Salem AK (2015) Identification of QTLs for four physiological traits in an advanced backcross population of wheat under drought stress. Plant Omics 8:122–129

    CAS  Google Scholar 

  • Biswal AK, Kohli A (2013) Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed 31:749–766

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aus J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat resistance in wheat. Crop Sci 21:43–47

    Article  Google Scholar 

  • Borojevic S, Kraljevic-Balalic M (1984) Inheritance of leaf architecture at different stages of wheat development. Zeitschrift für Pflanzenzüchtung 93:89–100

    Google Scholar 

  • Bundó M, Coca M (2016) Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. Plant Biotechnol J 14:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Zhu J (2006) QTLs for flag leaf area of rice under multi environments. Life Sci J 3:79–82

    CAS  Google Scholar 

  • Chen M, Luo J, Shao G, Wei X, Tang S et al (2012) Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep 31:863–872

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou X, Chang S, Chu Z, Wang H, Han S, Wang Y (2017) Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Biochem Biophys Res Commun 493:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciucă M, Petcu E (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom Agric Res 26:21–24

    Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhu M, Xu Z, Xu Q (2019) Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. Theor Appl Genet 132:1887–1896

    Article  CAS  PubMed  Google Scholar 

  • Diab AA, Kantety R, La Rota CM, Sorrells ME (2007) Comparative genetics of stress-related genes and chromosomal regions associated with drought tolerance in wheat, barley and rice. Genes Genomes Genom 1:47–55

    Google Scholar 

  • Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M (2016) Photoperiod-H1 (Ppd-H1) controls leaf size. Plant Physiol 172:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Li X, Xiong L (2011) Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet 123:815–826

    Article  PubMed  Google Scholar 

  • Elshafei AA, Saleh M, Al-Doss AA, Moustafa KA, Al-Qurainy FH, Barakat MN (2013) Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stressed condition. Aust J Crop Sci 7:887–893

    CAS  Google Scholar 

  • Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J (2015) QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed 35:1–16

    Article  CAS  Google Scholar 

  • Farooq M, Tagle AG, Santos RE, Ebron LA et al (2010) Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines. J Integr Plant Biol 52:578–584

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Yu X, An C (2013) Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Plant Physiol Biochem 73:202–210

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom 279:499–507

    Article  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5. https://doi.org/10.3390/agronomy7010005

    Article  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla KJ, Luan S, Nimmo HG, Sussman MR (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isidro J, Knox R, Clarke F, Singh A, DePauw R, Clarke J (2012) Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    Article  CAS  PubMed  Google Scholar 

  • Khaliq I, Irshad A, Ahsan M (2008) Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.). Cereal Res Commun 36:65–76

    Article  Google Scholar 

  • Kippes N, Debernardi JM, Vasquez-Gross HA, Akpinar BA, Budak H, Kato K et al (2015) Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci USA 112:5401–5410

    Article  CAS  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kong X, Lv W, Jiang S, Zhang D, Cai G, Pan J, Li D (2013) Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize. BMC Genom 14:1–15

    Article  CAS  Google Scholar 

  • Levitt J (1972) The response of the plants to environmental stresses. Academic Press Inc., New York

    Google Scholar 

  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66:429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Sun G, Ren X, Li C, Sun D (2015) Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 16:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu K, Xu H, Liu G, Guan P, Zhou X, Peng H, Yao Y, Ni Z, Sun Q, Du J (2018) QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet 131:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, Del Moral LFG, Demontis A, El-Ahmed A (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 107:89–101

    Article  CAS  PubMed  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X (2008) Mutation of the rice Narrow leaf1gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperature cereals: phenotyping, quantitative trait loci, markers and the selection environments. Funct Plant Biol 37:85–97

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Saleh MS, Al-Doss AA, Elshafei AA, Moustafa KA, Al-Qurainy FH, Barakat MN (2014) Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol Plant 58:64–70

    Article  CAS  Google Scholar 

  • Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467

    Article  CAS  Google Scholar 

  • Simón MR (1999) Inheritance of flag-leaf angle, flag-leaf area and flag-leaf area duration in four wheat crosses. Theor Appl Genet 98:310–314

    Article  Google Scholar 

  • Singh NK, Dalal V, Batra K, Singh BK, Chitra G, Singh A, Ghazi IA, Yadav MJ, Pandit A, Dixit R, Singh PK, Singh H, Koundal KR, Gaikwad K, Mohapatra T, Sharma TR (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion and transposition of genes. Funct Integr Genom 7:17–35

    Article  CAS  Google Scholar 

  • Singh K, Shukla S, Kadam S, Semwal VK, Singh NK, Khanna-Chopra R (2015) Genomic regions and underlying candidate genes associated with coleoptile length under deep sowing conditions in a wheat RIL population. J Plant Biochem Biotechnol 24:324–330

    Article  CAS  Google Scholar 

  • Singh A, Sagar S, Biswas DK (2017) Calcium dependent protein kinase, a versatile player in plant stress management and development. Criti Rev Plant Sci 36:336–352

    Article  Google Scholar 

  • Sohrabi M, Rafii MY, Hanafi MM, Akmar ASN, Latif MA (2012) Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits. Sci World J. https://doi.org/10.1100/2012/416291

    Article  Google Scholar 

  • Sorrells ME, Rota ML, Bermudez-Kandianis CE (2003) Comparative DNA analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan C, Weng XY, Yan WH, Bai XF, Xing YZ (2012) Ghd7, a pleiotropic gene controlling flag leaf area in rice. Yi Chuan 34:901–906

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Gong R, Sun W, Zhang C, Yu S (2018) Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.). Theor and Appl Genet 131: 801–815

    Article  CAS  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  PubMed  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM (2014) Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol 55:551–569

    Article  CAS  PubMed  Google Scholar 

  • Vikram P, Swamy BPM, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89. https://doi.org/10.1186/1471-2156-12-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan B, Lin Y, Mou T (2007) Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581:1179–1189

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhou GL, Yu HH, Yu SB (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet 123:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhou G, Cui K, Li Z, Yu S (2012) Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breed 29:99–113

    Article  CAS  Google Scholar 

  • Wang L, Yu C, Xu S, Zhu Y, Huang W (2016) OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice. Plant Cell Environ 39:2740–2753

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Hu W, Deng X (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM (2016) Evolution of VRN2/Ghd7-like genes in vernalization-mediated repression of grass flowering. Plant Physiol 170:2124–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, Zhang D, Ouyang S, Wang Z, Li D, Wang G, Zhang D, Yuan C, Wang L, You M, Han J, Liu Z (2015) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351

    Article  CAS  Google Scholar 

  • Xue DW, Chen MC, Zhou MX, Chen S, Mao Y, Zhang GP (2008a) QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J Zhejiang Univ Sci B 9:938–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008b) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z, Su XH, Xu XW, Jiang G, Zhang S, Jia HY, Kong ZX, Zhang LX, Ma ZQ (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu T, Li B, Sui Y, Chen J, Shi J, Wing RA, Chen M (2012) Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genomes. PLoS ONE 7:1–11

    Google Scholar 

  • Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, Li M (2016) Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet 17:94–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33:824–832

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos M, Jiang YQ (2014) Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genom 15:211

    Article  CAS  Google Scholar 

  • Zhang B, Ye W, Ren D, Tian P, Peng Y, Gao Y, Ruan B (2015) Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Rice. https://doi.org/10.1186/s12284-014-0039-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat Triticum aestivum heading time across diverse environments. J Exp Bot 64:3747–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Indian Council of Agricultural Research for financial support to Dr. R. Khanna-Chopra and Dr. N. K. Singh under the “Network project on Transgenics in crops and functional genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khanna-Chopra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13562_2019_534_MOESM1_ESM.tif

Supplementary Fig. 1 Frequency distribution of flag leaf area (a), flag leaf length (b) and flag leaf width (c) in the parents and the WL711/C306 RIL population under irrigated and water deficit stress treatment in Delhi during the year 2008–2009 and 2009–2010 and Indore 2008–2009 trials. Histograms with the solid and open bars represent the frequencies of flag leaf area, flag leaf length and flag leaf width of RILs under irrigated and water deficit stress treatments respectively. W-WL711, C-C306 (TIFF 486 kb)

13562_2019_534_MOESM2_ESM.tif

Supplementary Fig. 2 Frequency distribution of Cell membrane stability (CMS, expressed as % relative injury) in the flag leaf at post-anthesis stage (A + 14) of the parents and the WL711/C306 RILs under water deficit stress conditions. W- WL711, C- 306 (TIFF 80 kb)

Supplementary material 3 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna-Chopra, R., Singh, K., Shukla, S. et al. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J. Plant Biochem. Biotechnol. 29, 276–286 (2020). https://doi.org/10.1007/s13562-019-00534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-019-00534-y

Keywords

Navigation