Skip to main content
Log in

Testing Static and Kinematic Modes of Precise Point Positioning Service in Ukraine

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The article presents the results of experimental studies of the TerraStar service, which implements autonomous real-time PPP (Precise Point Positioning) technology. The service provides high-speed orbital and clock data of GPS, GLONASS, GALILEO, BeiDou navigation satellites received from more than 100 global navigation satellite system (GNSS) ground stations. These data, together with the algorithms of the NovAtel dual-frequency (multi-system) navigation receiver with integrated TerraStar PPP technology provide solutions for high-precision (4–40 cm) position determination. The data is transmitted to the navigation receiver via radio channels of geostationary satellites.

The authors have evaluated the claimed positioning accuracy for Ukraine in difficult radio navigation conditions (urban canyon, the city of Kyiv and Kyiv region), which complements a number of existing studies on the accuracy of TerraStar service in different regions of the world.

An experimental technique is described that contains the procedures for initializing, recording, and storing data from a navigation receiver for subsequent comparison with a reference trajectory generated using GrafNav/GrafNet 8.70 software.

It was determined that the accuracy of estimating coordinates obtained in post-processing by PPP using GrafNav/GrafNet 8.70 software is comparable with the accuracy of coordinates calculated by the NovAtel OEM 719 receiver in real time using information from TerraStar.

It was experimentally confirmed that the positioning accuracy in the studied area corresponds to the accuracy declared by the TerraStar providers, which remains for 5 min even in the absence of TerraStar data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European GNSS Agency, GNSS Market Report, Issue 5 (2017). URI: https://www.gsa.europa.eu/system/files/reports/gnssmarketreport2017-surveying.pdf.

  2. S. V. Sokolov, V. V. Kamenskij, S. M. Kovalev, “Stochastic estimation of ephemerides of navigation satellites in perturbed orbits,” Radioelectron. Commun. Syst.61, No. 8, 350 (2018). DOI: https://doi.org/10.3103/S0735272718080034.

    Article  Google Scholar 

  3. Q. J. Mohd, D. S. Achanta, V. K. R. Nalam, T. K. Pant, “Comparison of TEC estimation techniques using S1 and L5 signals of IRNSS,” Radioelectron. Commun. Syst.61, No. 7, 306 (2018). DOI: https://doi.org/10.3103/S0735272718070038.

    Article  Google Scholar 

  4. O. Kutsenko, S. Ilnytska, V. Konin, “Investigation of the residual tropospheric error influence on the coordinate determination accuracy in a satellite landing system,” Aviation22, No. 4, 156 (Dec. 2018). DOI: https://doi.org/10.3846/aviation.2018.7082.

    Article  Google Scholar 

  5. S. Ye. Martynyuk, D. O. Vasylenko, F. F. Dubrovka, A. G. Laush, “Novel microstrip antenna array for anti-jam satellite navigation system,” Radioelectron. Commun. Syst.58, No. 3, 97 (2015). DOI: https://doi.org/10.3103/S0735272715030012.

    Article  Google Scholar 

  6. V. V. Konin, F. O. Shyshkov, “Autonomous navigation of service spacecrafts on geostationary orbit using GNSS signals,” Radioelectron. Commun. Syst.59, No. 12, 562 (2016). DOI: https://doi.org/10.3103/S0735272716120049.

    Article  Google Scholar 

  7. K. Gunning, J. Blanch, T. Walter, “SBAS corrections for PPP integrity with solution separation,” Proc. of 2019 Int. Tech. Meeting of The Institute of Navigation, 28–31 Jan. 2019, Virginia, USA (2019), pp. 707–719. DOI: https://doi.org/10.33012/2019.16739.

  8. Z. Nie, P. Zhou, F. Liu, Z. Wang, Y. Gao, “Evaluation of orbit, clock and ionospheric corrections from five currently available SBAS L1 services: Methodology and analysis,” Remote Sensing11, No. 4, 411 (2019). DOI: https://doi.org/10.3390/rs11040411.

    Article  Google Scholar 

  9. N. S. Kuzmenko, I. V. Ostroumov, K. Marais, “An accuracy and availability estimation of aircraft positioning by navigational aids,” Proc. of 2018 IEEE 5th Int. Conf. on Methods and Systems of Navigation and Motion Control, MSNMC, 16–18 Oct. 2018, Kyiv, Ukraine (IEEE, 2018), pp. 36–41. DOI: https://doi.org/10.1109/MSNMC.2018.8576276.

  10. I. V. Ostroumov, N. S. Kuzmenko, “Accuracy assessment of aircraft positioning by multiple radio navigational aids,” Telecommun. Radio Engineering77, No. 8, 705 (2018). DOI: https://doi.org/10.1615/telecomradeng.v77.i8.40.

    Article  Google Scholar 

  11. V. Kharchenko, M. Mukhina, “Correlation-extreme visual navigation of unmanned aircraft systems based on speed-up robust features,” Aviation18, No. 2, 80 (2014). DOI: https://doi.org/10.3846/16487788.2014.926645.

    Article  Google Scholar 

  12. M. P. Mukhina, D. M. Demchenko, “Analysis of visual correlation-extreme methods of UAV navigation,” 2013 IEEE 2nd Int. Conf. Actual Problems of Unmanned Air Vehicles Developments Proc., APUAVD, 15–17 Oct. 2013, Kyiv, Ukraine (IEEE, 2013), pp. 213–216. DOI: https://doi.org/10.1109/APUAVD.2013.6705329.

  13. NovAtel CORRECT with PPP using TerraStar Corrections. APN-061 Rev K (2019). URI: https://www.novatel.com/assets/Documents/Bulletins/APN061-NovAtelCORRECT-withTerraStar.pdf.

  14. “Precise Positioning with NovAtel CORRECT Including Performance Analysis,” NovAtel White Paper (Apr. 2015). URI: https://www.novatel.com/assets/Documents/Papers/NovAtel-CORRECT-PPP.pdf.

  15. A. Jokinen, C. Ellum, I. Webster, S. Shanmugam, K. Sheridan, “NovAtel CORRECT with precise point positioning (PPP): Recent developments,” Proc. of 31st Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, ION GNSS + 2018, Sept. 2018, Miami, USA (IEEE, 2018), pp. 1866–1882. DOI: https://doi.org/10.33012/2018.15824.

  16. A. Zhalilo, A. Yakovchenko, “Development of PPP-method realization for low Earth orbit satellite trajectory determination using on-board GPS-observations,” Eastern-European J. Enterprise Technol.5, No. 9, 33 (2016). DOI: https://doi.org/10.15587/1729-4061.2016.81026.

    Article  Google Scholar 

  17. C. Cai, Y. Gao, L. Pan, J. Zhu, “Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and GALILEO,” Advances Space Res.56, No. 1, 133 (2015). DOI: https://doi.org/10.1016/j.asr.2015.04.001.

    Article  Google Scholar 

  18. L. Pan, X. Zhang, X. Li, X. Li, C. Lu, J. Liu, Q. Wang, “Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and GALILEO,” Advances Space Res.63, No. 9, 2696 (2019). DOI: https://doi.org/10.1016/j.asr.2017.07.029.

    Article  Google Scholar 

  19. J. Guo, X. Li, Z. Li, L. Hu, G. Yang, C. Zhao, D. Fairbairn, D. Watson, M. Ge, “Multi-GNSS precise point positioning for precision agriculture,” Precision Agriculture19, No. 5, 895 (2018). DOI: https://doi.org/10.1007/s11119-018-9563-8.

    Article  Google Scholar 

  20. K. Kazmierski, “Performance of absolute real-time multi-GNSS kinematic positioning,” Artificial Satellites53, No. 2, 75 (2018). DOI: https://doi.org/10.2478/arsa-2018-0007.

    Article  Google Scholar 

  21. F. Xia, S. Ye, P. Xia, L. Zhao, N. Jiang, D. Chen, G. Hu, “Assessing the latest performance of GALILEO-only PPP and the contribution of GALILEO to multi-GNSS PPP,” Advances Space Res.63, No. 9, 2784 (2019). DOI: https://doi.org/10.1016/j.asr.2018.06.008.

    Article  Google Scholar 

  22. A. Jokinen, C. Eilum, I. Webster, S. Masterson, T. Morley, “NovAtel CORRECT with precise point positioning (PPP) for high accuracy kinematic applications,” Proc. of 28th Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, ION GNSS + 2015, Sept. 2015, Florida, USA (2015), pp. 1123–1152. URI: https://www.ion.org/publications/abstract.cfm?articleID=12846.

  23. J. B. DeSanto, C. D. Chadwell, D. T. Sandwell, “Kinematic post-processing of ship navigation data using precise point positioning,” J. Navigation72, No. 3, 795 (2019). DOI: https://doi.org/10.1017/S0373463318000887.

    Article  Google Scholar 

  24. R. Romero-Andrade, A. Zamora-Maciel, J. D. J. Uriarte-Adrián, F. Pivot, M. E. Trejo-Soto, “Comparative analysis of precise point positioning processing technique with GPS low-cost in different technologies with academic software,” Measurement136, 337 (2019). DOI: https://doi.org/10.1016/i.measurement.2018.12.100.

    Article  Google Scholar 

  25. L. De Groot, E. Infante, A. Jokinen, B. Kruger, L. Norman, “Precise positioning for automotive with mass market GNSS chipsets,” Proc. of 31st Int. Tech. Meeting of the Satellite Division of the Institute of Navigation, ION GNSS + 2018, Sept. 2018, Miami, USA (2018), pp. 596–610. DOI: https://doi.org/10.33012/2018.16003.

  26. D. Laurichesse, S. Banville, “Innovation: Instantaneous centimeter-level multi-frequency precise point positioning,” GPS World J.29, No. 4 (Apr. 2018). URI: https://www.gpsworld.com/innovation-instantaneous-centimeter-level-multi-frequency-precise-point-positioning/.

  27. V. Kharchenko, A. Zhalilo, V. Kondratyuk, V. Konin, O. Kutsenko, V. Sushko, D. Shelkovenkov, V. Shokalo, “GPS navigation and surveying, the results of experimental verification of OmniSTAR technology,” Proc. GosNII GA Aeronavigation, No. 7, 28 (2007). URI: http://er.nau.edu.ua:8080/handle/NAU/25602.

  28. V. V. Konin, O. V. Kutsenko, E. O. Lukianenko, S. I. Ilnytska, “Experimental investigation of multi-GNSS in static mode,” Proc. of 2018 IEEE 5th Int. Conf. on Methods and Systems of Navigation and Motion Control, MSNMC, 16–18 Oct. 2018, Kyiv, Ukraine (IEEE, 2018), pp. 179–182. DOI: https://doi.org/10.1109/MSNMC.2018.8576274.

  29. V. P. Kharchenko, V. M. Kondratyuk, S. I. Ilnytska, O. V. Kutsenko, “Recommendations to UAV navigation system test validation and some practical results,” Proc. of 2014 IEEE 3rd Int. Conf. on Methods and Systems of Navigation and Motion Control, MSNMC, 14–17 Oct. 2014, Kyiv, Ukraine (IEEE, 2014), pp. 31–34. DOI: https://doi.org/10.1109/MSNMC.2014.6979723.

  30. O. V. Kutsenko, S. I. Ilnytska, V. M. Kondratyuk, V. V. Konin, “Unmanned aerial vehicle position determination in GNSS landing system,” Proc. of 2017 IEEE 4th Int. Conf. Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD, 17–19 Oct. 2017, Kyiv, Ukraine (IEEE, 2017), pp. 79–83. DOI: https://doi.org/10.1109/APUAVD.2017.8308781.

  31. TerraStar® Correction Services. URI: https://www.novatel.com/products/terrastar-gnss-corrections/#contentTab1.

  32. Introducing NovAtel Connect™. URI: https://www.novatel.com/assets/documents/papers/introducingnovatelconnect.pdf.

  33. Waypoint products group, A NovAtel Precise Positioning Product, GrafNav/GrafNet, GrafNav Static. User Manual, OM-20000165, Rev. 4 (2018). URI: https://www.novatel.com/assets/Documents/Waypoint/Downloads/GrafNav-GrafNet-User-Manual-870.pdf.

  34. M. S. Grewal, L. R. Weill, A. P. Andrews, Global Positioning Systems, Inertial Navigation and Integration (Wiley, NY, 2001). DOI: https://doi.org/10.1002/0471200719.

    Google Scholar 

  35. S. V. Bulashev, Statistics for Traders [in Russian] (Sputnik+, Moscow, 2003).

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to NovAtel. Inc. (Canada) and EPS (Kharkiv, Ukraine) for the opportunity to conduct experimental research of the high-precision positioning service TerraStar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Kondratiuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019100054 with DOI: https://doi.org/10.20535/S0021347019100054.

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 10, pp. 626–639.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratiuk, V., Konin, V., Kutsenko, O. et al. Testing Static and Kinematic Modes of Precise Point Positioning Service in Ukraine. Radioelectron.Commun.Syst. 62, 530–540 (2019). https://doi.org/10.3103/S0735272719100054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719100054

Navigation