Skip to main content
Log in

Computer Vision for Real-Time Control in Drying

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The range of applications of computer vision for product inspection, monitoring, and control in drying in both offline and online modes are reviewed. The basics of computer vision, image acquisition, processing, pattern recognition, and learning are discussed. General approach to interpretation of computer vision data, relevant to drying process, is proposed. Examples of process control, based on computer vision as “intelligent” observer, are provided. Real-time imaging, data processing, and analysis make computer vision an excellent tool for feedback control of drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aghbashlo M, Hosseinpour S, Ghasemi-Varnamkhasti M (2014) Computer vision technology for real-time food quality assurance during drying process. Trends Food Sci Technol 39:76–84

    Article  CAS  Google Scholar 

  2. Bonazzi C, Courtois F (2011) Impact of drying on the mechanical properties and crack formation in rice. In Modern Drying Technology: Product Quality and Formulation (Ed by E Tsotsas and AS Mujumdar). Wiley-VCH, pp 21–47.

  3. Brosnan T, Sun DW (2004) Improving quality inspection of food products by computer vision––a review. J Food Eng 61:3–16

    Article  Google Scholar 

  4. Campeau C, Proctor JTA, Jackson CC, Rupasinghe HPV (2003) Rust-spotted north American ginseng roots: phenolic, antioxidant, ginsenoside and mineral nutrient content. Hortscience 38:179–182

    CAS  Google Scholar 

  5. Campos-Mendiola R, Hernandez-Sanchez H, Chanona-Perez JJ, Alamilla-Beltran L, Jimenez-Aparicio A, Fito P, Gutierrez-Lopez GF (2007) Non-isotropic shrinkage and interfaces during convective drying of potato slabs within the frame of the systematic approach to food engineering systems (SAFES) methodology. J Food Eng 83:285–292

    Article  CAS  Google Scholar 

  6. Casleton DK, Shadle LJ, Ross AA (2010) Measuring the voidage of a CFB through image analysis. Powder Technol 203:12–22

    Article  CAS  Google Scholar 

  7. Chanona-Perez J, Quevedo R, Jimenez Aparacio AR, Gumeta Chavez C, Mendoza Perez JA, Calderon Dominguez G, Alamilla-Beltran L, Gutierrez-Lopez GF (2008) Image processing methods and fractal analysis for Quantative Evaluatio of size, shape, structure and microstructure in food materials. In: Food engineering integrated approaches (Ed. by Gutierrez-Lopez GF, Barbosa-Canovas GV, Welti-Chanes J, Parada-Arias E) Springer, NY, p. 277–286.

  8. Chen Y, Martynenko A (2013) Computer vision for real-time measurements of shrinkage and color changes in blueberry convective drying. Dry Technol 31(10):1114–1123

    Article  CAS  Google Scholar 

  9. Chen YN, Sun DW, Cheng JH (2016) Recent advances for rapid identification of chemical information of muscle foods by hyperspectral imaging analysis. Food Eng Rev doi. doi:10.1007/s12393-016-9139-1

    Google Scholar 

  10. Courtois F, Faessel M, Bonazzi C (2010) Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control 21(4):567–572

    Article  Google Scholar 

  11. Cubero S, Aleixos N, Molto E, Gomez-Sanchis J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Tech 4(4):487–504

    Article  Google Scholar 

  12. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press Inc., NY

    Google Scholar 

  13. Dalvand MJ, Mohtasebi SS, Rafiee S (2014) Optimization on drying conditions of a solar electrohydrodynamic drying systems based on desirability concept. Food Science & Nutrition 2(6):758–767

    Article  Google Scholar 

  14. Davidson VJ, Li X, Brown RB (2002) Fuzzy methods for ginseng drying control. In: The 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, France, July 1–5 2002, 1–5, pp 913–918

  15. Davidson VJ, Martynenko AI, Parhar NK, Sidahmed M, Brown RB (2009) Forced-air drying of ginseng root: pilot-scale control system for three-stage process. Dry Technol 27:451–458

    Article  Google Scholar 

  16. Demirhan E, Ozbek B (2009) Color change kinetics of microwave-dried basil. Dry Technol 27:156–166

    Article  Google Scholar 

  17. Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Tech 15:230–249

    Article  CAS  Google Scholar 

  18. Du CJ, Sun DW (2006) Learning techniques used in computer vision for food quality evaluation: a review. J Food Eng 72:39–55

    Article  Google Scholar 

  19. Fan F, Ma Q, Ge J, Peng Q, Riley WW, Tang S (2013) Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. J Food Eng 118:426–433

    Article  Google Scholar 

  20. Fernández L, Castillero C, Aguilera JM (2005) An application of image analysis to dehydration of apple discs. J Food Eng 67:185–193

    Article  Google Scholar 

  21. Gao X, Tan J (1996a) Analysis of expanded-food texture by image processing part I: geometric properties. J Food Process Eng 19(4):425–444

    Article  Google Scholar 

  22. Gao X, Tan J (1996b) Analysis of expanded-food texture by image processing part II: mechanical properties. J Food Process Eng 19(4):445–456

    Article  Google Scholar 

  23. Gomes GFS, Leta FR (2012) Applications of computer vision techniques in the agriculture and food industry: a review. Eur Food Res Technol 235(6):989–1000

    Article  CAS  Google Scholar 

  24. Gonzalez RC, Woods EE (2008) Digital Image Processing, 3rd edn. Pearson Education Inc., London

    Google Scholar 

  25. Goyache F, Bahamonde A, Alonso J, Lopez S, del Coz JJ, Quevedo JR et al (2001) The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends Food Sci Tech 12(10):370–381

    Article  Google Scholar 

  26. Guiné RPF, Barroca MJ (2012) Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod Process 90:58–63

    Article  Google Scholar 

  27. Gunasekaran S (1996) Computer vision technology for food quality assurance. Trends Food Sci Tech 7(8):245–256

    Article  CAS  Google Scholar 

  28. Gunasekaran S (2000) Nondestructive Food Evaluation: Techniques to Analyze Properties and Quality. CRC Press

  29. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Transactions on System, Man and Cybernetics 3(6):610–621

    Article  Google Scholar 

  30. Huang M, Wang Q, Zhang M, Zhu Q (2014) Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J Food Eng 128:24–30

    Article  Google Scholar 

  31. Hosseinpour S, Rafiee S, Mohtasebi SS (2011) Application of image processing to analyse shrinkage and shape changes of shrimp batch during drying. Dry Technol 29:1416–1438

    Article  Google Scholar 

  32. Hosseinpour S, Rafiee S, Mohtasebi SS, Aghbashlo M (2013) Application of computer vision technique for on-line monitoring of shrimp color changes during drying. J Food Eng 115(1):99–114

    Article  Google Scholar 

  33. Hosseinpour S, Rafiee S, Aghbashlo M, Mohtasebi SS (2014) A novel image processing approach for in-line monitoring of visual texture during shrimp drying. J Food Eng 143:154–166

    Article  Google Scholar 

  34. Igathinathane C, Pordesimo LO, Batchelor WD (2009) Major orthogonal dimensions measurement of food grains by machine vision using ImageJ. Food Res Int 42:76–84

    Article  Google Scholar 

  35. Jin X, van der Sman RGM, van Straten G, Boom RM, van Boxtel AJB (2014) Energy efficient drying strategies to retain nutritional components in broccoli (Brassica oleracea var. italica). J Food Eng 123:172–178

    Article  CAS  Google Scholar 

  36. Jinorose M, Devahastin S, Blacher S, Leonard A (2009). Application of Image Analysis in Food Drying. In: Advances in Food Dehydration (Ed. by C Ratti). CRC Press, Taylor & Francis, 63–96

  37. Klinger T (2003) Image processing with LabVIEW and IMAQ vision. Pearson Education, Inc., Upper Saddle River, New Jersey

    Google Scholar 

  38. Krokida MK, Tsami E, Maroulis ZB (1998) Kinetics on color changes during drying of some fruits and vegetables. Dry Technol 16(3–5):667–685

    Article  CAS  Google Scholar 

  39. Kucheryavski S, Esbensen KH, Bogomolov A (2010) Monitoring of pellet coating process with image analysis: a feasibility study. J Chemom 24(7–8):472–480

    Article  CAS  Google Scholar 

  40. Labuza TP, McNally L, Gallaher D, Hawkes J, Hurtado F (1972) Stability of intermediate moisture foods. 1. Lipids oxidation. J Food Sci 37(1):154–159

    Article  CAS  Google Scholar 

  41. Lewicki PP, Duszczyk E (1998) Color change of selected vegetables during convective drying. Int J Food Prop 1(3):263–273

    Article  Google Scholar 

  42. Liew CV, Wang LK, Wan Sia Heng P (2010) Development of a visiometric process analyzer for real-time monitoring of bottom spray fluid-bed coating. J Pharm Sci 99(1):346–356

    Article  CAS  Google Scholar 

  43. Lopez-Ortiz A, Rodriguez-Ramirez J, Mendez-Lagunas LL (2013) Effect of drying air temperature on the structural properties of garlic evaluated during drying. Int J Food Prop 16:1516–1529

    Article  Google Scholar 

  44. Majumdar S, Jayas D (2000a) Classification of cereal grains using machine vision: I. Morphology models. T ASAE 43:1669–1675

    Article  Google Scholar 

  45. Majumdar S, Jayas D (2000b) Classification of cereal grains using machine vision: II. Color models. T ASAE 43:1677–1680

    Article  Google Scholar 

  46. Majumdar S, Jayas D (2000c) Classification of cereal grains using machine vision: III. Texture models. T ASAE 43:1681–1687

    Article  Google Scholar 

  47. Majumdar S, Jayas D (2000d) Classification of cereal grains using machine vision: IV. Combined morphology, color, and texture models. T ASAE 43:1689–1694

    Article  Google Scholar 

  48. Madiouli J, Sghairer J, Orteu JJ, Robert L, Lecomte D, Sammouda H (2011) Non-contact measurement of the shrinkage and calculation of porosity during the drying of banana. Dry Technol 29:1358–1364

    Article  Google Scholar 

  49. Martynenko AI, Davidson VJ, Brown RB (2005) Intelligent computer vision system (SAIF) for automated inspection of ginseng root quality. In: CSAE Annual Meeting, Manitoba, Canada, June 26–29 2005

  50. Martynenko AI (2006) Computer-vision system for control of drying processes. Dry Technol 24(7):879–888

    Article  Google Scholar 

  51. Martynenko AI, Yang SX (2007) Intelligent control system for thermal processing of biomaterials. In: IEEE Conference on Networking, Sensing & Control, London, UK, 2007: 93–98

  52. Martynenko A (2008) Computer Vision System for Ginseng Drying: Remote Sensing, Control and Optimization of Quality in Food Thermal Processing. ADM Verlag 200 p

  53. Martynenko AI (2011) Porosity evaluation from real-time imaging and mass measurements. Food Bioprocess Tech 4(3):417–428

    Article  Google Scholar 

  54. Martynenko A (2014) True, particle and bulk density of shrinkable biomaterials: evaluation from drying experiments. Dry Technol 32(11):1319–1325

    Article  Google Scholar 

  55. Martynenko A, Kudra T (2015) Non-isothermal drying of medicinal plants. Dry Technol 33(13):1550–1539

    Article  Google Scholar 

  56. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR (2000) Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Tech 11(9–10):340–346

    Article  CAS  Google Scholar 

  57. Mayor L, Moreira R, Sereno AM (2011) Shrinkage, density, porority and shape changes during dehydration of pumpkin. J Food Eng 103(1):29–37

    Article  Google Scholar 

  58. Mendoza F, Dejmek P, Aguilera JM (2007) Colour and image texture analysis in classification of commercial potato. Food Res Int 40:1146–1154

    Article  Google Scholar 

  59. Mery D, Pedreschi F, Soto A (2013) Automated design of a computer vision system for visual food quality evaluation. Food Bioprocess Tech 6(8):2093–2108

    Article  Google Scholar 

  60. Mogol BA, Gokmen V (2014) Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety. J Sci Food Agr 94:1259–1263

    Article  CAS  Google Scholar 

  61. Možina M, Tomazevic D, Leben S, Pernus F, Likar B (2010) Digital imaging as a process analytical technology tool for fluid-bed pellet coating process. Eur J Pharm Sci 41(1):156–162

    Article  Google Scholar 

  62. Mulet A, Garcia-Reverter J, Bon J, Berna A (2000) Effect of shape on potato and cauliflower shrinkage during drying. Dry Technol 18:1201–1219

    Article  Google Scholar 

  63. Nadian MH, Rafiee S, Aghbashlo M, Hosseinpour S, Mohtasebi SS (2015) Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food Bioprod Process 94:263–274

    Article  Google Scholar 

  64. Nahimana H, Zhang M (2011) Shrinkage and color change during microwave vacuum drying of carrot. Dry Technol 29:836–847

    Article  CAS  Google Scholar 

  65. Nicolas JJ, Richard-Forget FC, Goupy P, Amiot MJ, Aubert SY (1994) Enzymatic browning reactions in apple and apple products. Crit Rev Food Sci 34(2):109–157

    Article  CAS  Google Scholar 

  66. Oliveira SM, Brandao TRS, Silva CLM (2016) Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: a review. Food Eng Rev 8:134–163

    Article  CAS  Google Scholar 

  67. Orphanides A, Goulas V, Gekas V (2016) Drying technologies: vehicle to high-quality herbs. Food Eng Rev 8:164–180

    Article  Google Scholar 

  68. Patel KK, Kar A, Jha SN, Khan MA (2012) Machine vision system: a tool for quality inspection of food and agricultural products. J Food Sci Tech 49(2):123–141

    Article  Google Scholar 

  69. Pedreschi F, Leon J, Mery D, Moyano P (2006) Development of a computer cvision system to measure the color of potato chips. Food Res Int 39:1092–1098

    Article  Google Scholar 

  70. Pedreschi F, Mery D, Meddoza F, Aguilera JM (2004) Classification of potato chips using pattern recognition. J Food Sci 69(6):E264–E270

    Article  CAS  Google Scholar 

  71. Quevedo R, Jaramillo M, Diaz O, Pedreschi F, Aguilera JM (2009) Quantification of enzymatic browning in apple slices applying the fractal texture Fourier image. J Food Eng 95(2):285–290

    Article  CAS  Google Scholar 

  72. Ramos IN, Miranda JMR, Brandao TRS, Silva CLM (2010) Estimation of water diffusivity parameters on grape dynamic drying. J Food Eng 97:519–525

    Article  Google Scholar 

  73. Romani S, Rocculi P, Mendoza F, Dalla Rosa M (2009) Image characterization of potato chip appearance during frying. J Food Eng 93(4):487–494

    Article  Google Scholar 

  74. Romano G, Argyropoulos D, Nagle M, Khan MT, Müller J (2012) Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J Food Eng 109:438–448

    Article  Google Scholar 

  75. Rueden CT, Eliceiri KW (2007) Visualization approaches for multidimensional biological image data. BioTechniques 43:S31–S36

    Article  Google Scholar 

  76. Saadevandi BA, Turton R (1998) The application of computer-based imaging to the measurements of particle velocity and voidage profiles in a fluidized bed. Powder Technol 98:183–189

    Article  CAS  Google Scholar 

  77. Saldana E, Siche R, Huaman R, Lujan M, Castro W, Quevedo R (2013) Scientia Agropeculiaria 4:55–63

    Article  Google Scholar 

  78. Sampson DJ, Chang YK, Rupasinghe HV, Zaman QU (2014) A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J Food Eng 127:49–57

    Article  Google Scholar 

  79. Silva PI, Stringheta PC, Teofilo RF, Oliveira IRN (2013) Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. J Food Eng 117:538–544

    Article  CAS  Google Scholar 

  80. Siche R, Vejarano R, Aredo V, Velasquez L, Saldana E, Quevedo R (2016) Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Eng Rev. doi:10.1007/s12393-015-9137-8

    Google Scholar 

  81. Sturm B, Hofacker WC, Hensel O (2012) Optimizing the drying parameters for hot-air–dried apples. Dry Technol 30:1570–1582

    Article  CAS  Google Scholar 

  82. Sturm B, Vega AMN, Hofacker WC (2014) Influence of process control strategies on drying kinetics, colour and shrinkage of air dried apples. Appl Therm Eng 62:455–460

    Article  Google Scholar 

  83. Sun DW (2008) Computer vision Technology for Food Quality Evaluation, 2nd edn. Elsevier Inc., NY

    Google Scholar 

  84. Suzuki K, Kubota K, Hasegawa T, Hosaka H (1976) Shrinkage in dehydration of root vegetables. J Food Sci 41:1189–1193

    Article  Google Scholar 

  85. Thybo AK, Szczypinski PM, Karlsson AH, Donstrup S, Stokilde-Jorgensen HS, Andersen HJ (2004) Prediction of sensory texture quality attributes of cooked potatoes by NMR-imaging (MRI) of raw potatoes in combination with different imaging methods. J Food Eng 61:91–100

    Article  Google Scholar 

  86. Vadivambai R, Jayas DS (2016) Bio-imaging principles, techniques and applications. CRC Press, Taylor & Francis Group, 381p

    Google Scholar 

  87. Vernon D (1991) Machine vision: automated visual inspection and robot vision. Prentice-Hall International (UK) Ltd, 260 p

  88. Watano S, Miyanami K (1995) Image processing for on-line monitoring of granule size distribution and shape in fluidized bed granulation. Powder Technol 83(1):55–60

    Article  CAS  Google Scholar 

  89. Watano S (2001) Direct control of wet granulation processes by image processing system. Powder Technol 117(1):163–172

    Article  CAS  Google Scholar 

  90. Wu D, Sun DW (2013) Colour measurements by computer vision for food quality control. Trends Food Sci Tech 29(1):5–20

    Article  Google Scholar 

  91. Xiao HW, Bai JW, Xie L, Sun DW, Gao ZJ (2015) Thin-layer air inpingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food Bioprod Process 94:581–591

    Article  CAS  Google Scholar 

  92. Xiong CZ, Xu JY, Zou JC, Qi DX (2006) Texture classification based on EMD and FFT. Science A 7(9):1516–1521

    Google Scholar 

  93. Yadollahinia A, Latifi A, Mahdavi R (2009) New method for determination of potato slice shrinkage during drying. Comput Electron Agr 65(2):268–274

    Article  Google Scholar 

  94. Yu H, MacGregor JF (2003) Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometr Intell Lab 67:125–144

    Article  CAS  Google Scholar 

  95. Zapotoczny P, Zielinska M, Nita Z (2008) Application of image analysis for the varietal classification of barley. J Cereal Sci 48(1):104–110

    Article  Google Scholar 

  96. Zareiforoush H, Minaei S, Alizadeh MR, Banakar A (2015) Potential applications of computer vision in quality inspection of rice: a review. Food Eng Rev 7:321–345

    Article  Google Scholar 

  97. Zenoozian MS, Devahastin S, Razavi MA, Shahidi F, Poreza HR (2007) Use of artificial neural network and image analysis to predict physical properties of osmotically dehydrated pumpkin. Dry Technol 26(1):132–144

    Article  Google Scholar 

  98. Zenoozian MS, Devahastin S (2009) Application of wavelet transform coupled with artificial neural network for predicting physicochemical properties of osmotically dehydrated pumpkin. J Food Eng 90(3):219–227

    Article  Google Scholar 

  99. Zhang Q, Litchfield JB (1993) Fuzzy logic control for a continuous crossflow grain dryer. J Food Process Eng 16:59–77

    Article  Google Scholar 

  100. Zheng C, Sun DW, Zheng L (2006) Recent developments and applications of image features for food quality evaluation and inspection - a review. Trends Food Sci Tech 17:642–655

    Article  CAS  Google Scholar 

  101. Zielinska M, Markowski M (2012) Color characteristics of carrots: effect of drying and rehydration. Int J Food Prop 15(2):450–466

    Article  CAS  Google Scholar 

  102. Ziou D, Tabbone S (1998) Edge detection techniques - an overview. Int J Pattern Recogn 8:537–559

    Google Scholar 

  103. Zuech N (2003) Machine vision and lighting. http://www.visiononline.org/vision-resources-details.cfm/vision-resources/Machine-Vision-and-Lighting/content_id/1269. (Accessed on April 6, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Martynenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, A. Computer Vision for Real-Time Control in Drying. Food Eng Rev 9, 91–111 (2017). https://doi.org/10.1007/s12393-017-9159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-017-9159-5

Keywords

Navigation