Skip to main content
Log in

Low-Energy Sub-Optimal Low-Thrust Trajectories to Libration Points and Halo-Orbits

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract—

The paper considers the problem of calculating direct and low-energy, low-thrust trajectories to the libration points of the Earth–Moon system and to halo-orbits. A method for solving the problem is proposed. It consists of calculating stable manifolds of libration points or halo-orbits and calculating a low-thrust trajectory from an initial circular Earth orbit to the given point of this manifold using sub-optimal feedback control. With a fixed final mass of a spacecraft, the last stage of calculations is reduced to solving the Cauchy problem. The numerical examples are given for the calculation of direct and low-energy trajectories to libration points and to halo-orbits and the optimization of entry points to stable manifolds for low-energy trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Egorov, V.A., Some problems of lunar flight dynamics, Usp. Fiz. Nauk, 1957, vol. 43, no. 1, pp. 73–117.

    Article  Google Scholar 

  2. Egorov, V.A., Prostranstvennaya zadacha dostizheniya Luny (The Spatial Problem of Reaching the Moon), Moscow: Nauka, 1965.

  3. Egorov, V.A. and Gusev, L.I., Dinamika pereletov mezhdu Zemlei i Lunoi (Dynamics of Flights between the Earth and the Moon), Moscow: Nauka, 1980.

  4. Wu, W., Tang, Y., Zhang, L., and Qiao, D., Design of communication relay mission for supporting lunar-farside soft landing, Sci. China Inf. Sci., 2018, vol. 61, no. 4, id 040305.

  5. McGuire, M.L., Burke, L.M., McCarty, S.L., et al., Low thrust cis-lunar transfers using a 40 kW-class solar electric propulsion spacecraft, AAS/AIAA Astrodynamics Specialist Conference, Washington, 2017, AAS 17-583.

  6. Davis, D.C., Phillips, S.M., Howell, K.C., et al., Stationkeeping and transfer trajectory design for spacecraft in cislunar space, AAS/AIAA Astrodynamics Specialist Conference, Washington, 2017, AAS 17-826.

  7. Markeev, A.P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Space Dynamics), Moscow: Nauka, 1978.

  8. Szebehely, V., Theory of Orbits: The Restricted Problem of Three Bodies, New York: Academic Press, 1967; Moscow: Nauka, 1982.

  9. Duboshin, G.N., Nebesnaya mekhanika. Analiticheskie i kachestvennye metody (Celestial Mechanics. Analytical and Qualitative Methods), Moscow: Nauka, 1964.

  10. Il’in, I.S., Sazonov, V.V., and Tuchin, A.G., Halo orbits in the vicinity of the L2 libration point in the Sun–Earth system, Cosmic Res., 2014, vol. 52, no. 3, pp. 189–204.

    Article  ADS  Google Scholar 

  11. Parker, J.S. and Anderson, R.L., Low-Energy Lunar Trajectory Design, Hoboken, New Jersey: John Wiley & Sons, 2014.

    Book  Google Scholar 

  12. Folta, D.C., Pavlak, T.A., Haapala, A.F., et al., Earth–moon libration point orbit stationkeeping: Theory, modeling, and operations, Acta Astronaut., 2014, vol. 94, no. 1, pp. 421–433.

    Article  ADS  Google Scholar 

  13. Belbruno, E., Capture Dynamics and Chaotic Motions in Celestial Mechanics with Applications to the Construction of Low Energy Transfers, Izhevsk, Princeton: Princeton University Press, 2004; NITs RKhD, 2011.

  14. Belbruno, E.A. and Miller, J.K., Sun-perturbed Earth-to-Moon transfers with ballistic capture, J. Guid. Control Dyn., 1993, vol. 16, no. 4, pp. 770–775.

    Article  ADS  Google Scholar 

  15. Uesugi, K., Results of the MUSES-A “HITEN” mission, Adv. Space Res., 1996, vol. 18, no. 11, pp. 69–72.

    Article  ADS  Google Scholar 

  16. Lidov, M.L., Lyakhova, V.A., and Teslenko, N.M., Single-pulsed flight on a conditionally periodic orbit in the neighborhood of a point of the Earth-Sun system, Kosm. Issled., 1987, vol. 25, no. 2, pp. 163–185.

    ADS  Google Scholar 

  17. Ivashkin, V.V., On trajectories of Earth–Moon flight of a particle with its temporary capture by the Moon, Dokl. Phys., 2002, vol. 47, no. 11, pp. 825–827.

    Article  ADS  MathSciNet  Google Scholar 

  18. Ivashkin, V.V., On trajectories for the Earth-to-Moon flight with capture by the Moon, Proceedings of the International Lunar Conference 2003, Hawaii: American Astronautical Society and Space Age, 2004, vol. 108, AAS 03-723, pp. 157–166.

  19. Foing, B.H., Racca, G.D., Marini, A., et al., SMART-1 after lunar capture: First results and perspectives, J. Earth Syst. Sci., 2005, vol. 114, no. 6, pp. 687–697.

    Article  ADS  Google Scholar 

  20. Ozimek, M.T. and Howell, K.C., Low-thrust transfers in the Earth–Moon system, including applications to libration point orbits, J. Guid. Control Dyn., 2010, vol. 33, no. 2, pp. 533–549.

    Article  ADS  Google Scholar 

  21. Mingotti, G., Topputo, F., and Bernelli-Zazzera, F., Low-energy, low-thrust transfers to the Moon, Celestial Mech. Dyn. Astron., 2009, vol. 105, pp. 61–74.

    Article  ADS  MathSciNet  Google Scholar 

  22. Shimmin, R., Trajectory design for a very-low-thrust lunar mission, PhD Thesis, University of Adelaide, 2012, pp. 1–204.

  23. Arkhangel’skii, N.I., Akimov, V.N., Kuvshinova, E.Yu., and Sinitsyn, A.A., Choosing parameters of elliptic parking orbit to improve safety of nuclear reusable tugs, Kosm. Tekh. Tekhnol., 2016, vol. 13, no. 2, pp. 45–54.

    Google Scholar 

  24. Kluever, C.A. and Pierson, B.L., Optimal low-thrust Earth-Moon transfers with a switching function, J. Astronaut. Sci., 1994, vol. 42, no. 3, pp. 269–284.

    Google Scholar 

  25. Kluever, C.A. and Pierson, B.L., Optimal low-thrust three-dimensional Earth-Moon trajectories, J. Guid. Control Dyn., 1995, vol. 18, no. 4, pp. 830–837.

    Article  ADS  Google Scholar 

  26. Petukhov, V.G., Quasioptimal control with feedback for multiorbit low-thrust transfer between noncoplanar elliptic and circular orbits, Cosmic Res., 2011, vol. 49, no. 2, pp. 121–130.

    Article  ADS  Google Scholar 

  27. Petukhov, V.G. and Svotina, V.V., Robust suboptimal feedback control for low-thrust transfers between noncoplanar elliptical and circular orbits, 3rd European Conference for Aero-Space Sciences (EUCASS-2009), Versailles, France, 2009.

  28. Petukhov, V.G., Robust quasi-optimal feedback control for low-thrust transfers between noncomplanar elliptic and circular orbits, Vestn. Mosk. Aviats. Inst., 2010, vol. 17, no. 3, pp. 50–58.

    Google Scholar 

  29. Ivashkin, V.V. and Petukhov, V.G., Trajectories of low-thrust transfers between the orbits of Earth’s satellites and the Moon with orbit capture by the Moon, Preprint of Keldysh Inst. of Appl. Math., Russ. Acad. Sci., Moscow, 2008, no. 81.

  30. Petukhov, V.G. and Konstantinov, M.S., Spacecraft insertion into Earth–Moon L1 and lunar orbit, 60th International Astronautical Congress, 2009, IAC-09.D2.3.11, pp. 7423–7431.

  31. Petukhov, V.G., Popov, G.A., and Svotina, V.V., Suboptimal low-thrust trajectories for lunar missions, Global Lunar Conference, 31 May–3 June 2010, Beijing, China, 2010, GLUC-2010-2.2.P3.

  32. Farquhar, R.W. and Kamel, A.A., Quasi-periodic orbits about the translunar libration point, Celestial Mech., 1973, vol. 7, no. 4, pp. 458–473.

    Article  ADS  Google Scholar 

  33. Richardson, D.L., Analytic construction of periodic orbits about the collinear points, Celestial Mech., 1980, vol. 22, no. 3, pp. 241–253.

    Article  ADS  MathSciNet  Google Scholar 

  34. Breakwell, J.V. and Brown, J.V., The ‘Halo’ family of 3-dimensional periodic orbits in the Earth–Moon restricted 3-body problem, Celestial Mech., 1979, vol. 20, no. 4, pp. 389–404.

    Article  ADS  Google Scholar 

  35. Brouke, R.A. and Cefola, P.J., On the equinoctial orbital elements, Celestial Mech., 1972, vol. 5, pp. 303–310.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by a grant of the Russian Science Foundation (agreement No. 16-19-10429).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Ivanyukhin or V. G. Petukhov.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanyukhin, A.V., Petukhov, V.G. Low-Energy Sub-Optimal Low-Thrust Trajectories to Libration Points and Halo-Orbits. Cosmic Res 57, 378–388 (2019). https://doi.org/10.1134/S0010952519050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952519050022

Navigation