Skip to main content
Log in

Tensor Factorization with Total Variation and Tikhonov Regularization for Low-Rank Tensor Completion in Imaging Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The main aim of this paper is to study tensor factorization for low-rank tensor completion in imaging data. Due to the underlying redundancy of real-world imaging data, the low-tubal-rank tensor factorization (the tensor–tensor product of two factor tensors) can be used to approximate such tensor very well. Motivated by the spatial/temporal smoothness of factor tensors in real-world imaging data, we propose to incorporate a hybrid regularization combining total variation and Tikhonov regularization into low-tubal-rank tensor factorization model for low-rank tensor completion problem. We also develop an efficient proximal alternating minimization (PAM) algorithm to tackle the corresponding minimization problem and establish a global convergence of the PAM algorithm. Numerical results on color images, color videos, and multispectral images are reported to illustrate the superiority of the proposed method over competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://trace.eas.asu.edu/yuv/.

  2. http://www.cs.columbia.edu/CAVE/databases/multispectral/.

References

  1. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Svaiter, B.-F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Auslender, A.: Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables. Numer. Math. 18(3), 213–223 (1971)

    MathSciNet  MATH  Google Scholar 

  4. Auslender, A.: Asymptotic properties of the Fenchel dual functional and applications to decomposition problems. J. Optim. Theory Appl. 73(3), 427–449 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.-N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007a)

    MATH  Google Scholar 

  8. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007b)

    MathSciNet  MATH  Google Scholar 

  9. Cai, X.: Variational image segmentation model coupled with image restoration achievements. Pattern Recognit. 48(6), 2029–2042 (2015)

    MATH  Google Scholar 

  10. Carroll, J.-D., Pruzansky, S., Kruskal, J.-B.: CANDELINC: a general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika 45(1), 3–24 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Combettes, P.-L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    MATH  Google Scholar 

  13. Combettes, P.-L., Wajs, V.-R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Coste, M.: An Introduction to O-Minimal Geometry. Istituti editoriali e poligrafici internazionali, Pisa (2000)

    Google Scholar 

  15. Esser, E., Zhang, X., Chan, T.-F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Gabay, D., Mercier, B.: A Dual Algorithm for the Solution of Non Linear Variational Problems Via Finite Element Approximation. Institut de recherche d’informatique et d’automatique, Rocquencourt (1975)

    MATH  Google Scholar 

  17. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Hansen, P.-C., Nagy, J .G., O’leary, D.-P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  20. Hong, M., Luo, Z.-Q.: On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1–2), 165–199 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Jain, P., Oh, S.: Provable tensor factorization with missing data. In: Proceedings of the International Conference on Neural Information Processing Systems (2014)

  22. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Liu, G.: Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 326, 243–257 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Kilmer, M., Martin, C.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Kilmer, M.-E., Braman, K., Hao, N., Hoover, R.-C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Kolda, T.-G., Bader, B.-W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54(2), 447–468 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier 48, 769–783 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Li, X., Ye, Y., Xu, X.: Low-rank tensor completion with total variation for visual data inpainting. In: Proceedings of Thirty-First AAAI Conference on Artificial Intelligence (2017)

  30. Li, X.-T., Zhao, X.-L., Jiang, T.X., Zheng, Y.B., Ji, T.Y., Huang, T.Z.: Low-rank tensor completion via combined non-local self-similarity and low-rank regularization. Neurocomputing 367, 1–12 (2019)

    Google Scholar 

  31. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Google Scholar 

  32. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

  33. Ortega, J.-M., Rheinboldt, W.-C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (1970)

    MATH  Google Scholar 

  34. Rudin, L.-I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Semerci, O., Hao, N., Kilmer, M.-E., Miller, E.-L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Tan, H., Cheng, B., Wang, W., Zhang, Y.-J., Ran, B.: Tensor completion via a multi-linear low-n-rank factorization model. Neurocomputing 133, 161–169 (2014)

    Google Scholar 

  37. Tao, D., Li, X., Wu, X., Maybank, S.-J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Google Scholar 

  38. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    MathSciNet  Google Scholar 

  40. Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018)

    Google Scholar 

  41. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Xu, W.-H., Zhao, X.-L., Ji, T.-Y., Miao, J.-Q., Ma, T.-H., Wang, S., Huang, T.-Z.: Laplace function based nonconvex surrogate for low-rank tensor completion. Signal Process. Image Commun. 73, 62–69 (2019)

    Google Scholar 

  43. Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.: Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 363, 124–144 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z.: A novel algebraic framework for processing multidimensional data: theory and application. Ph.D. dissertation, Tufts University (2017)

  45. Zhang, Z., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511–1526 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)

  47. Zhao, Xi-Le, Wang, Fan, Michael, K.Ng: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7(1), 456–475 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Jiang, T.-X., Ma, T.-H., Ji, T.-Y.: Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans. Geosci. Remote Sens. (2019). https://doi.org/10.1109/TGRS.2019.2940534

  49. Zhou, P., Feng, J.: Outlier-robust tensor PCA. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

  50. Zhou, M., Liu, Y., Long, Z., Chen, L., Zhu, C.: Tensor rank learning in CP decomposition via convolutional neural network. Signal Process. Image Commun. 73, 12–21 (2018a)

    Google Scholar 

  51. Zhou, P., Lu, C., Lin, Z., Zhang, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27(3), 1152–1163 (2018b)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Le Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported by research grants HKRGC GRF (12306616, 12200317, 12300519, 12300218), HKU Grant (104005583), and NSFC (61876203, 61772003, 11801479)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, XL., Ng, M.K. & Zhao, XL. Tensor Factorization with Total Variation and Tikhonov Regularization for Low-Rank Tensor Completion in Imaging Data. J Math Imaging Vis 62, 900–918 (2020). https://doi.org/10.1007/s10851-019-00933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00933-9

Keywords

Mathematics Subject Classification

Navigation