Skip to main content
Log in

Spreading behaviors of high-viscous nanofluid droplets impact on solid surfaces

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this work, the impact dynamics of high-viscous nanofluid droplets onto a solid surface has been investigated experimentally by means of high-speed camera visualization technique. We dispersed various nanoparticles (multiwall carbon nanotube (MWCNT), nano-graphene, and nano-graphite powder) into high-viscous base fluid (epoxy resin) to obtain the stable and homogenous nanofluids without surfactant additives. The well dispersed nanofluids show different degree of shear-thinning behaviors, and the shear-thinning properties of those fluids have been characterized by the power-law rheology model. The dynamic contact angle (DCA), transient dimensionless height, and transient contacting factor along with the spreading time under different Weber numbers (We) have been investigated. The results show that the nanofluid with a lower shear viscosity over the entire range of the shear rates results in larger variations of the contacting factor and the dimensionless height. The effect of surface wettability on droplet impact behaviors is more significant for the fluid with higher shear viscosity and less shear-thinning degree during the receding phase. The latter spreading and receding motions of the droplet with higher shear viscosity and shear-thinning degree are suppressed significantly, regardless of the Weber numbers in current study. Finally, a model based on experimental data has been proposed to predict the maximum spreading factor of high-viscous droplet impact on solid surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S.M. and S.Y. Lee, 2012, Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces, Exp. Therm. Fluid Sci. 37, 37–45.

    Article  Google Scholar 

  • Andrade, R., O. Skurtys, and F. Osorio, 2015, Development of a new method to predict the maximum spread factor for shear thinning drops, J. Food Eng. 157, 70–76.

    Article  Google Scholar 

  • Attané, P., F. Girard, and V. Morin, 2007, An energy balance approach of the dynamics of drop impact on a solid surface, Phys. Fluids 19, 012101.

    Article  Google Scholar 

  • Bartolo, D., A. Boudaoud, G. Narcy, and D. Bonn, 2007, Dynamics of non-Newtonian droplets, Phys. Rev. Lett. 99, 174502.

    Article  Google Scholar 

  • Bergeron, V., D. Bonn, J.Y. Martin, and L. Vovelle, 2000, Controlling droplet deposition with polymer additives, Nature 405, 772–775.

    Article  Google Scholar 

  • Bertola, V., 2015, An impact regime map for water drops impacting on heated surfaces, Int. J. Heat Mass Transf. 85, 430–437.

    Article  Google Scholar 

  • Boyer, F., E. Sandoval-Nava, J.H. Snoeijer, J.F. Dijksman, and D. Lohse, 2016, Drop impact of shear thickening liquids, Phys. Rev. Fluids 1, 013901.

    Article  Google Scholar 

  • Breitenbach, J., J. Kissing, I.V. Roisman, and C. Tropea, 2018, Characterization of secondary droplets during thermal atomization regime, Exp. Therm. Fluid Sci. 98, 516–522.

    Article  Google Scholar 

  • Choi, S.U.S., 1995, Enhancing thermal conductivity of fluids with nano-particles, ASME, FED 231, 99–105.

    Google Scholar 

  • Clanet, C., C. Béguin, D. Richard, and D. Quéré, 2004, Maximal deformation of an impacting drop, J. Fluid Mech. 517, 199–208.

    Article  Google Scholar 

  • Derby, B., 2012, Printing and prototyping of tissues and scaffolds, Science 338, 921–926.

    Article  Google Scholar 

  • Duan, F., T. Wong, and A. Crivoi, 2012, Dynamic viscosity measurement in non-Newtonian graphite nanofluids, Nanoscale Res. Lett. 7, 360.

    Article  Google Scholar 

  • Eggers, J., M.A. Fontelos, C. Josserand, and S. Zaleski, 2010, Drop dynamics after impact on a solid wall: Theory and simulations, Phys. Fluids 22, 062101.

    Article  Google Scholar 

  • Finotello, G., S. De, J.C.R. Vrouwenvelder, J.T. Padding, K.A. Buist, A. Jongsma, F. Innings, and J.A.M. Kuipers, 2018, Experimental investigation of non-Newtonian droplet collisions: The role of extensional viscosity, Exp. Fluids 59, 113.

    Article  Google Scholar 

  • German, G. and V. Bertola, 2009, Impact of shear-thinning and yield-stress drops on solid substrates, J. Phys.-Condens. Matter 21, 375111.

    Article  Google Scholar 

  • Hadadian, M., E.K. Goharshadi, and A. Youssefi, 2014, Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids, J. Nanopart. Res. 16, 2788.

    Article  Google Scholar 

  • Hao, C., Y. Zhou, X. Zhou, L. Che, B. Chu, and Z. Wang, 2016, Dynamic control of droplet jumping by tailoring nanoparticle concentrations, Appl. Phys. Lett. 109, 021601.

    Article  Google Scholar 

  • Jiang, L., L. Gao, J. Sun, 2003, Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci. 260, 89–94.

    Article  Google Scholar 

  • Jiao, Z., F. Li, L. Xie, X. Liu, B. Chi, and W. Yang, 2018, Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer, J. Appl. Polym. Sci. 135, 45933.

    Article  Google Scholar 

  • Josserand, C. and S.T. Thoroddsen, 2016, Drop impact on a solid surface, Annu. Rev. Fluid Mech. 48, 365–391.

    Article  Google Scholar 

  • Kole, M. and T.K. Dey, 2013, Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids, J. Applied Phys. 113, 084307.

    Article  Google Scholar 

  • Li, Y., F. Wang, H. Liu, and H. Wu, 2015, Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate, Microfluid. Nanofluid. 18, 111–120.

    Article  Google Scholar 

  • Liu, H.L., J.S. Moon, and W.R. Hwang, 2012, Numerical simulation of a shear-thinning fluid through packed spheres, Korea-Aust. Rheol. J. 24, 297–306.

    Article  Google Scholar 

  • Ma, A.W.K., F. Chinesta, and M.R. Mackley, 2009, The rheology and modeling of chemically treated carbon nanotubes suspensions, J. Rheol. 53, 547–573.

    Article  Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements, and Applications, 1st ed., Wiley-VCH, New York.

    Google Scholar 

  • Mandani, S., M. Norouzi, and M.M. Shahmardan, 2018, An experimental investigation on impact process of Boger drops onto solid surfaces, Korea-Aust. Rheol. J. 30, 99–108.

    Article  Google Scholar 

  • Masiri, S.M., M. Bayareh, and A.A. Nadooshan, 2019, Pairwise interaction of drops in shear-thinning inelastic fluids, Korea-Aust. Rheol. J. 31, 25–34.

    Article  Google Scholar 

  • Mehrali, M., E. Sadeghinezhad, M.M. Rashidi, A.R. Akhiani, S.T. Latibari, M. Mehrali, and H.S.C. Metselaar, 2015, Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids, J. Nanopart. Res. 17, 1–17.

    Article  Google Scholar 

  • Moghaddam, M.B., E.K. Goharshadi, M.H. Entezari, and P. Nancarrow, 2013, Preparation, characterization, and rheological properties of graphene-glycerol nanofluids, Chem. Eng. J. 231, 365–372.

    Article  Google Scholar 

  • Moon, J.H., J.B. Lee, and S.H. Lee, 2013, Dynamic behavior of non-Newtonian droplets impinging on solid surfaces, Mater. Trans. 54, M2012215.

    Article  Google Scholar 

  • Mourougou-Candoni, N., B. Prunet-Foch, F. Legay, M. Vignes-Adler, and K. Wong, 1999, Retraction phenomena of surfactant solution drops upon impact on a solid substrate of low surface energy, Langmuir 15, 6563–6574.

    Article  Google Scholar 

  • Murshed, S.M.S. and P. Estellé, 2017, A state of the art review on viscosity of nanofluids, Renew. Sust. Energ. Rev. 76, 1134–1152.

    Article  Google Scholar 

  • Özerinç, S., S. Kakaç, and A.G. Yazıcıoğlu, 2010, Enhanced thermal conductivity of nanofluids: A state-of-the-art review, Microfluid. Nanofluid. 8, 145–170.

    Article  Google Scholar 

  • Park, C., Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, and T.L.S. Clair, 2002, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chem. Phys. Lett. 364, 303–308.

    Article  Google Scholar 

  • Richter, B., K. Dullenkopf, and H.-J. Bauer, 2005, Investigation of secondary droplet characteristics produced by an isooctane drop chain impact onto a heated piston surface, Exp. Fluids 39, 351–363.

    Article  Google Scholar 

  • Rioboo, R., M. Marengo, and C. Tropea, 2002, Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids 33, 112–124.

    Article  Google Scholar 

  • Roisman, I.V., E. Berberović, and C. Tropea, 2009, Inertia dominated drop collisions. I. On the universal flow in the lamella, Phys. Fluids 21, 052103.

    Article  Google Scholar 

  • Rozhkov, A., B. Prunet-Foch, and M. Vignes-Adler, 2010, Impact of drops of surfactant solutions on small targets, Proc. R. Soc. A-Math. Phys. Eng. Sci. 466, 2897–2916.

    Article  Google Scholar 

  • Scheller, B.L. and D.W. Bousfield, 1995, Newtonian drop impact with a solid surface, AIChE J. 41, 1357–1367.

    Article  Google Scholar 

  • Srikar, R., T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea, and A.L. Yarin, 2009, Nanofiber coating of surfaces for intensification of drop or spray impact cooling, Int. J. Heat Mass Transf. 52, 5814–5826.

    Article  Google Scholar 

  • Stalder, A.F., G. Kulik, D. Sage, L. Barbieri, and P. Hoffmann, 2006, A snake-based approach to accurate determination of both contact points and contact angles, Colloid Surf. A-Physicochem. Eng. Asp. 286, 92–103.

    Article  Google Scholar 

  • Vega, E.J. and A.A. Castrejón-Pita, 2017, Suppressing prompt splash with polymer additives, Exp. Fluids 58, 57.

    Article  Google Scholar 

  • Wasan, D.T. and A.D. Nikolov, 2003, Spreading of nanofluids on solids, Nature 423, 156–159.

    Article  Google Scholar 

  • Yarin, A.L., 2006, Drop impact dynamics: Splashing, spreading, receding, bouncing …, Annu. Rev. Fluid Mech. 38, 159–192.

    Article  Google Scholar 

  • Yearsley, K.M., M.R. Mackley, F. Chinesta, and A. Leygue, 2012, The rheology of multiwalled carbon nanotube and carbon black suspensions, J. Rheol. 56, 1465–1490.

    Article  Google Scholar 

  • Yoo, H. and C. Kim, 2015, Generation of inkjet droplet of suspension in polymer solution, Korea-Aust. Rheol. J. 27, 137–149.

    Article  Google Scholar 

  • Zang, D., X. Wang, X. Geng, Y. Zhang, and Y. Chen, 2013, Impact dynamics of droplets with silicananoparticles and polymer additives, Soft Matter 9, 394–400.

    Article  Google Scholar 

  • Zhang, L., T. Ku, X. Cheng, Y. Song, and D. Zhang, 2018, Inkjet droplet deposition dynamics into square microcavities for OLEDs manufacturing, Microfluid. Nanofluid. 22, 47.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51506078, No. 51876086, and No. 51706089) and the Doctoral Fund of Ministry of Education of China (2015M581732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.L., Shen, X., Wang, R. et al. Spreading behaviors of high-viscous nanofluid droplets impact on solid surfaces. Korea-Aust. Rheol. J. 31, 167–177 (2019). https://doi.org/10.1007/s13367-019-0017-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0017-2

Keywords

Navigation