Skip to main content
Log in

CO2 gasification of char from spent mushroom substrate in TG-MS system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gasification of the char obtained from the spent substrate after mushroom cultivation was carried out in a thermobalance connected to a mass spectrometer in the temperature range from 200 to 950 °C and CO2 concentration from 5 to 100 vol%. Under non-isothermal conditions, in addition to the char gasification process, both carbonation and calcination reactions occurred. The investigation of gasification kinetics in CO2 was carried out under isothermal conditions. The rate of gasification reaction was determined from the shrinking core model, and kinetic constant has been calculated from Langmuir–Hinshelwood kinetics. On the basis of the conducted research, it was observed that the saturation of active sites on the char particles occurred above 50 vol% CO2, regardless of temperature. The analysis of gas composition indicates CO as the main product of gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong J, Nzihou A, Chi Y, Weiss-Hortala E, Ni M, Lyczko N, et al. Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO. Waste Biomass Valoriz. 2017;8:2735–46.

    Article  CAS  Google Scholar 

  2. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  3. Zhong C, Wei X. A comparative experimental study on the liquefaction of wood. Energy. 2004;29:1731–41.

    Article  CAS  Google Scholar 

  4. Bridgwater AV, Toft AJ, Brammer JG. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev. 2002;6:181–248.

    Article  CAS  Google Scholar 

  5. Wang G, Zhang J, Shao J, Liu Z, Wang H, Li X, et al. Experimental and modeling studies on CO2 gasification of biomass chars. Energy. 2016;114:143–54.

    Article  CAS  Google Scholar 

  6. McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour Technol. 2002;83:55–63.

    Article  CAS  Google Scholar 

  7. Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: reactors, feedstock, and kinetic studies. Chem Eng Sci. 2016;148:14–31.

    Article  CAS  Google Scholar 

  8. Chmielniak T, Sobolewski A, Tomaszewicz G. CO2-enhanced coal gasification. Experience of the institute for chemical processing of coal. Przem Chem. 2015;94:442–8.

    CAS  Google Scholar 

  9. Roberts DG, Harris DJ. Char gasification with O2, CO2, and H2O: effects of pressure on intrinsic reaction kinetics. Energy Fuels. 2000;14:483–9.

    Article  CAS  Google Scholar 

  10. Farid MM, Jeong HJ, Hwang J. Co-gasification of coal-biomass blended char with CO2 and H2O: effect of partial pressure of the gasifying agent on reaction kinetics. Fuel. 2015;162:234–8.

    Article  Google Scholar 

  11. Lyons GA, Sharma HSS, Kilpatrick M, Cheung L, Moore S. Monitoring of changes in substrate characteristics during mushroom compost production. J Agric Food Chem. 2006;54:4658–67.

    Article  CAS  Google Scholar 

  12. Finney KN, Ryu C, Sharifi VN, Swithenbank J. The reuse of spent mushroom compost and coal tailings for energy recovery: comparison of thermal treatment technologies. Bioresour Technol. 2009;100:310–5.

    Article  CAS  Google Scholar 

  13. Porada S, Czerski G, Grzywacz P, Makowska D, Dziok T. Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products. Thermochim Acta. 2017;653:97–105.

    Article  CAS  Google Scholar 

  14. Qin Y. Catalytic effect of alkali metal in biomass ash on the gasification of coal char in CO2. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08719-2.

    Article  Google Scholar 

  15. Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Prog Energy Combust Sci. 2009;35:121–40.

    Article  Google Scholar 

  16. Wang Y, Bell DA. Competition between H2O and CO2 during the gasification of Powder River Basin coal. Fuel. 2017;187:94–102.

    Article  CAS  Google Scholar 

  17. Williams BC, McMullan JT, McCahey S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour Technol. 2001;79:227–30.

    Article  CAS  Google Scholar 

  18. Ma Y, Wang Q, Sun X, Wang X, Su W, Song N. A study on recycling of spent mushroom substrate to prepare chars and activated carbon. BioResources. 2014;9:3939–54.

    Google Scholar 

  19. Jiang H, Cheng Z, Zhao T, Liu M, Zhang M, Li J, et al. Pyrolysis kinetics of spent lark mushroom substrate and characterization of bio-oil obtained from the substrate. Energy Convers Manag. 2014;88:259–66.

    Article  CAS  Google Scholar 

  20. Niedzielski P, Mleczek M, Budka A, Rzymski P, Siwulski M, Jasińska A, et al. A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. Eur Food Res Technol. 2017;243:1759–71.

    Article  CAS  Google Scholar 

  21. Liu Z, Wang Q. Calculation and confirmation of the kinetic triplet of metallurgical coke gasification with carbon dioxide under isothermal conditions. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08660-4.

    Article  Google Scholar 

  22. Ollero P, Serrera A, Arjona R, Alcantarilla S. The CO2 gasification kinetics of olive residue. Biomass Bioenergy. 2002;24:151–61.

    Article  Google Scholar 

  23. Bojan J, Nebojsa M, Dragoslava S. The gaseous products characterization of the pyrolysis process of various agricultural residues using TGA–DSC–MS techniques. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08733-4.

    Article  Google Scholar 

  24. Pacioni TR, Soares D, Di Domenico M, Rosa MF, de Fátima Peralta Muniz Moreira R, José HJ. Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Manag. 2016;58:221–9.

    Article  CAS  Google Scholar 

  25. Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C. Kinetic modelling of steam gasification of various woody biomass chars: influence of inorganic elements. Bioresour Technol. 2011;102:9743–8.

    Article  CAS  Google Scholar 

  26. Nowicki L, Ledakowicz S. Comprehensive characterization of thermal decomposition of sewage sludge by TG-MS. J Anal Appl Pyrol. 2014;110:220–8.

    Article  CAS  Google Scholar 

  27. APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: American Public Health Association; 2005.

    Google Scholar 

  28. Nowicki L, Antecka A, Bedyk T, Stolarek P, Ledakowicz S. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2011;104:693–700.

    Article  CAS  Google Scholar 

  29. Baker EH. The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. J Chem Soc. 1962. https://doi.org/10.1039/jr9620000464.

    Article  Google Scholar 

  30. Ahmed II, Gupta AK. Kinetics of woodchips char gasification with steam and carbon dioxide. Appl Energy. 2011;88:1613–9.

    Article  CAS  Google Scholar 

  31. Nowicki L, Markowski M. Gasification of pyrolysis chars from sewage sludge. Fuel. 2015;143:476–83.

    Article  CAS  Google Scholar 

  32. Evans J, Szekely JW. A structural model for gas–solid reactions with a moving boundary. Chem Eng Sci. 1970;25:1091–107.

    Article  Google Scholar 

  33. Ishida M, Wen CY. Comparison of zone-reaction model and unreacted-core shrnking model in solid–gas reactions-I isothermal analysis. Chem Eng Sci. 1971;26:1031–41.

    Article  CAS  Google Scholar 

  34. Bhatia SK, Perlmutter DD. A random pore model for fluid–solid reoctions: l. Isothermal, kinetic control. AIChE J. 1980;26:379–86.

    Article  CAS  Google Scholar 

  35. Liu Z, Wang Q. Kinetic study on metallurgical coke gasification by steam under various pressures. J Therm Anal Calorim. 2017;129:1839–45.

    Article  CAS  Google Scholar 

  36. Barrio M, Hustad JE. CO2 gasification of birch char and the effect of CO inhibition on the calculation of chemical kinetics. In: Bridgewater AV, editor. Progress in thermochemical biomass conversion, vol. 1. Oxford: Blackwell Science; 2001. pp. 47–60.

    Chapter  Google Scholar 

  37. Dhyani V, Kumar J, Bhaskar T. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol. 2017;245:1122–9. https://doi.org/10.1016/j.biortech.2017.08.189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed in the frame of project: Research centre for low-carbon energy technologies, Project No. CZ.02.1.01/0.0/0.0/16_019/0000753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslaw Slezak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezak, R., Krzystek, L. & Ledakowicz, S. CO2 gasification of char from spent mushroom substrate in TG-MS system. J Therm Anal Calorim 140, 2337–2345 (2020). https://doi.org/10.1007/s10973-019-09024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09024-8

Keywords

Navigation