Skip to main content

Advertisement

Log in

Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Electric vehicles (EVs) play a crucial role in addressing climate change and urban air quality concerns. China has emerged as the global largest EV market with 1.2 million EVs sold in 2018. This study established a novel life cycle energy use and emission inventory collecting up-to-date data including the electricity generation mix, emission controls in the power and industrial sectors, and the energy use in the fuel transport to estimate the well-to-wheels (WTW) greenhouse gas (GHG), and air pollutant emissions for battery electric vehicles (BEVs) and gasoline passenger vehicles in China. The results show that an average BEV has 35% lower WTW GHG emissions than an average gasoline car. BEVs reduce volatile organic compounds (VOCs) and nitrogen oxides (NOX) emissions by 98% and 34%, respectively, but have comparable or slightly higher primary fine particulate matter (PM2.5) and sulfur dioxide (SO2) emissions. Compact and small-size vehicles generally have lower GHG and air pollutant emissions than mid- and large-size vehicles. Class A vehicles contribute the most in the absolute amount of GHG and air pollutant emissions and therefore have the biggest potential for emission reduction. Our results suggest that global policymakers should continue to promote the transition to clean power sources, emission control, and fuel economy regulations, which are critical to enhancing emission mitigation benefits of BEVs. We also suggest EV development strategies should be formulated targeting vehicle class with the biggest emission mitigation potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • China Association of Automobile Manufactures (CAAM). Statistics 2019. http://www.caam.org.cn/

  • Cai S, Ma Q, Wang S, Zhao B, Brauer M, Cohen A, Martin RV, Zhang Q, Li Q, Wang Y, Hao J, Frostad J, Forouzanfar M, Buinett RT (2018) Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China. J Environ Manag 227:124–133

    Google Scholar 

  • CATARC (China Automotive Technology and Research Center) and GM (General Motor) (2007) Well-to-wheels analysis of energy consumption and GHG emissions of multi vehicle fuel in future China. Technical report

  • Chen X, Zhang H, Xu Z, Nielsen CP, McElroy MB, Lv J (2018) Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power. Nat Energy 3(5):413–421

    Google Scholar 

  • China Electric Power Yearbook (2016) China electric power promotion council. China Electric Power Press, Beijing (in Chinese)

    Google Scholar 

  • China Energy Statistics Yearbook (2016) National Bureau of Statistics, Energy Division. China Statistics Press

  • Ellingsen LA-W, Singh B, Strømman AH (2016) The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ Res Lett 11(5):054010

    Google Scholar 

  • The Greenhouse gases, Regulated emissions, and energy use in transportation model (GREET). Version 2017. Argonne National Laboratory. https://greet.es.anl.gov/index.php

  • Hawkins TR, Gausen OM, Strømman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17(8):997–1014

    Google Scholar 

  • He X, Wu Y, Zhang S, Tamor MA, Wallington TJ, Shen W, Han W, Fu L, Hao J (2016) Individual trip chain distributions for passenger cars: implications for market acceptance of battery electric vehicles and energy consumption by plug-in hybrid electric vehicles. Appl Energy 180:650–660

    Google Scholar 

  • He X, Zhang S, Ke W, Zheng Y, Zhou B, Liang X, Wu Y (2018) Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification. J Clean Prod 171:714–722

    Google Scholar 

  • Huo H, Cai H, Zhang Q, Liu F, He K (2015) Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: a comparison between China and the U.S. Atmos Environ 108:107–116

    Google Scholar 

  • Ke W, Zhang S, Wu Y, Zhao B, Wang S, Hao J (2017a) Assessing the future vehicle fleet electrification: the impacts on regional and urban air quality. Environ Sci Technol 51(2):1007–1016

    Google Scholar 

  • Ke W, Zhang S, He X, Wu Y, Hao J (2017b) Well-to-wheels energy consumption and emissions of electric vehicles: mid-term implications from real-world features and air pollution control progress. Appl Energy 188:367–377

    Google Scholar 

  • Liang Y, Niu D, Wang H, Li Y (2017) Factors affecting transportation sector CO2 emissions growth in China: an LMDI decomposition analysis. Sustainability 9:1730

    Google Scholar 

  • Liu Z. China’s carbon emissions report 2016: regional carbon emissions and the implication for China’s low carbon development. 2016. https://www.belfercenter.org/sites/default/files/legacy/files/China%20Carbon%20Emissions%202016%20final%20web.pdf

  • Liu H, Man H, Tschantz M, Wu Y, He K, Hao J (2015) VOC from vehicular evaporation emissions: status and control strategy. Environ Sci Technol 49(24):14424–14431

    Google Scholar 

  • Ma R, He X, Zheng Y, Zhou B, Lu S, Wu Y (2019) Real-world driving cycles and energy consumption informed by large-sized vehicle trajectory data. J Clean Prod 223:564–574

    Google Scholar 

  • Ministry of Ecology and Environment (MEE) of China. National Emission Inventory Guidebook. 2015 (in Chinese)

  • Ministry of Ecology and Environment (MEE) of China. China Vehicle Environmental Management Annual Report 2018 (in Chinese). http://dqhj.mee.gov.cn/jdchjgl/zhgldt/201806/P020180604354753261746.pdf

  • Motor Vehicle Emission Simulator (MOVES) by United States Environment Protection Agency. Version 2014. https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves

  • Ministry of Public Security (MPS) of the People’s Republic of China. Statistics. 2019 http://www.mps.gov.cn/n2254098/n4904352/c6354939/content.html

  • National Economic and Social Development Statistics (2015) National Bureau of Statistics

  • National Energy Administration. Action plan for energy saving and emission reduction and reconstruction of coal power (2014–2020). 2014 (in Chinese) http://zfxxgk.nea.gov.cn/auto84/201409/t20140919_1840.htm

  • Onat NC, Kucukvar M, Tataria O (2015) Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl Energy 15:36–49

    Google Scholar 

  • Orsi F, Muratori M, Rocco M, Colombo E, Rizzoni G (2016) A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: primary energy consumption, CO2 emissions, and economic cost. Appl Energy 169:197–209

    Google Scholar 

  • Ou X, Zhang X, Chang S (2010) Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy 38(1):406–418

    Google Scholar 

  • Shen W, Han W, Wallington TJ (2014) Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles. Environ Sci Technol 48:7069–7075

    Google Scholar 

  • Song W, Guo J, Wang C (2008) Study on China coal-based vehicle fuel energy consumption and carbon dioxide emissions based on WTW fuel cycle analysis. Automobile Technology 5–9 (in Chinese)

  • Tamayao MM, Michalek JJ, Hendrickson C, Azevedo IML (2015) Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. Environ Sci Technol 49(14):8844–8855

    Google Scholar 

  • Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng G, Xue T, Li M, Hong C, Lu Z, Streets DG, Guan D, He K (2018) Targeted emission reductions from global super-polluting power plant units. Nat. Sustainability 1:59–28

  • Tu W, Santi P, Zhao T, He X, Li Q, Dong L, Wallington TJ, Ratti C (2019) Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing. Appl Energy 250:147–160

    Google Scholar 

  • Wang Y, Teter J, Sperling D (2011) China’s soaring vehicle population: even greater than forecasted. Energy Policy 39:3296–3306

    Google Scholar 

  • Wang R, Wu Y, Ke W, Zhang S, Zhou B, Hao J (2015a) Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection? Appl Energy 147:92–103

    Google Scholar 

  • Wang H, Zhang X, Ouyang M (2015b) Energy and environmental life-cycle assessment of passenger car electrification based on Beijing driving patterns. SCIENCE CHINA Technol Sci 58(4):659–668

    Google Scholar 

  • Wu Y, Yang Z, Lin B, Liu H, Wang R, Zhou B, Hao J (2012) Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy 48:537–550

    Google Scholar 

  • Wu X, Wu Y, Zhang S, Liu H, Fu L, Hao J (2016) Assessment of vehicle emission programs in China during 1998-2013: achievement, challenges and implications. Environ Pollut 214:556–567

    Google Scholar 

  • Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, Walsh MP, Wallington TJ, Zhang KM, Stevanovic S (2017) On-road vehicle emissions and their control in China: a review and outlook. Sci Total Environ 574:332–349

    Google Scholar 

  • Yuksel T, Tamayao MM, Hendrickson C, Azevedo IML, Michalek JJ (2016) Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States. Environ Res Lett 11(4):13

    Google Scholar 

  • Zhang S, Wu Y, Wu X, Li M, Ge Y, Liang B, Xu Y, Zhou Y, Liu H, Fu L, Hao J (2014) Historic and future trends of vehicle emissions in Beijing, 1998-2020: a policy assessment for the most stringent vehicle emission control program in China. Atmos Environ 89:216–229

    Google Scholar 

  • Zhao B, Wang S, Wang J, Fu J, Liu T, Xu J et al (2013) Impact of national NOX and SO2 control policies on particulate matter pollution in China. Atmos Environ 77:453–463

    Google Scholar 

  • Zhou B, Wu Y, Zhou B, Wang R, Ke W, Zhang S, Hao J (2016) Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy 96(1):603–613

    Google Scholar 

  • Zhou B, Zhang S, Wu Y, Ke W, He X, Hao J (2018) Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements. Mitig Adapt Strateg Glob Chang 23(5):735–756

    Google Scholar 

Download references

Acknowledgments

This work is conducted in compliance with the China Society of Automotive Engineers (C-SAE) group standard T/CSAE 91-2018 (Life cycle assessment methods for greenhouse gases and air pollutant emissions of the automobile) released in September 2018.

Funding

This work is supported by the National Key Research and Development Program of China (fund NO. 2017YFC0212100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., He, X., Wang, H. et al. Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China. Mitig Adapt Strateg Glob Change 25, 355–370 (2020). https://doi.org/10.1007/s11027-019-09890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-019-09890-5

Keywords

Navigation