Skip to main content

Advertisement

Log in

Functional characterization and evaluation of protective efficacy of EA752–862 monoclonal antibody against B. anthracis vegetative cell and spores

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752–862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752–862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752–862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752–862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Z, Mahtab M, Robert P (2011) Monoclonal antibody therapies against anthrax. Toxins 8:1004–1019. https://doi.org/10.3390/toxins3081004

    Article  CAS  Google Scholar 

  2. Van der Goot G, Young JA (2009) Receptors of anthrax toxin and cell entry. Mol Aspects Med 30(6):406–412. https://doi.org/10.1016/j.mam.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  3. Holty JE, Kim RY, Bravata DM (2006) Anthrax: a systematic review of atypical presentations. Ann Emerg Med 48(2):200–211. https://doi.org/10.1016/j.annemergmed.2005.11.035

    Article  PubMed  Google Scholar 

  4. Stern EJ, Uhde KB, Shadomy SV, Messonnier N (2008) Conference report on public health and clinical guidelines for anthrax. Emerg Infect Dis. https://doi.org/10.3201/eid1404.070969

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schneemann A, Manchester M (2009) Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future Microbiol 4(1):35–43. https://doi.org/10.2217/17460913.4.1.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henning LN, Carpenter S, Stark GV, Serbina NV (2018) Development of protective immunity in New Zealand white rabbits challenged with Bacillus anthracis spores and treated with antibiotics and obiltoxaximab, a monoclonal antibody against protective antigen. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.01590-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Little SF, Ivins BE, Fellows PF, Pitt ML, Norris SL, Andrews GP (2004) Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine 22(3–4):422–430. https://doi.org/10.1016/j.vaccine.2003.07.004

    Article  CAS  PubMed  Google Scholar 

  8. Kobiler D, Gozes Y, Rosenberg H, Marcus D, Reuveny S, Altboum Z (2002) Efficiency of protection of guinea pigs against infection with Bacillus anthracis spores by passive immunization. Infect Immun 70(2):544–550. https://doi.org/10.1128/IAI.70.2.544-550.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beedham RJ, Turnbull PC, Williamson ED (2001) Passive transfer of protection against Bacillus anthracis infection in a murine model. Vaccine 19(31):4409–4416. https://doi.org/10.1016/S0264-410X(01)00197-9

    Article  CAS  PubMed  Google Scholar 

  10. Chen Z, Moayeri M, Zhao H, Crown D, Leppla SH, Purcell RH (2009) Potent neutralization of anthrax edema toxin by a humanized monoclonal antibody that competes with calmodulin for edema factor binding. Proc Natl Acad Sci USA 106(32):13487–13492. https://doi.org/10.1073/pnas.0906581106

    Article  PubMed  Google Scholar 

  11. Staats HF, Alam SM, Scearce RM, Kirwan SM, Zhang JX, Gwinn WM, Haynes BF (2007) In vitro and in vivo characterization of anthrax anti-protective antigen and anti-lethal factor monoclonal antibodies after passive transfer in a mouse lethal toxin challenge model to define correlates of immunity. Infect Immun 75(11):5443–5452. https://doi.org/10.1128/IAI.00529-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozel TR, Murphy WJ, Brandt S, Blazar BR, Lovchik JA, Thorkildson P, Percival A, Lyons CR (2004) Monoclonal antibodies to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc Natl Acad Sci USA 101(14):5042–5047. https://doi.org/10.1073/pnas.0401351101

    Article  CAS  PubMed  Google Scholar 

  13. Couture-Tosi E, Delacroix H, Mignot T, Mesnage S, Chami M, Fouet A, Mosser G (2002) Structural analysis and evidence for dynamic emergence of Bacillus anthracis S-layer networks. J Bacteriol 184(23):6448–6456. https://doi.org/10.1128/JB.184.23.6448-6456.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mesnage S, Tosi-Couture E, Fouet A (1999) Production and cell surface anchoring of functional fusions between the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase. Mol Microbiol 31(3):927–936. https://doi.org/10.1046/j.1365-2958.1999.01232.x

    Article  CAS  PubMed  Google Scholar 

  15. Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19(17):4473–4484. https://doi.org/10.1093/emboj/19.17.4473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fouet A (2009) The surface of Bacillus anthracis. Mol Aspects Med 30(6):374–385. https://doi.org/10.1016/j.mam.2009.07.00

    Article  CAS  PubMed  Google Scholar 

  17. Dullforce P, Sutton DC, Heath AW (1998) Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nat Med 4(1):88–91

    Article  CAS  Google Scholar 

  18. Zhang Y, Qiu J, Zhou Y, Farhangfar F, Hester J, Lin AY, Decker WK (2008) Plasmid-based vaccination with candidate anthrax vaccine antigens induces durable type 1 and type 2 T-helper immune responses. Vaccine. 26(5):614–622. https://doi.org/10.1016/j.vaccine.2007.11.072

    Article  CAS  PubMed  Google Scholar 

  19. Uchida M, Harada T, Enkhtuya J, Kusumoto A, Kobayashi Y, Chiba S, Shyaka A, Kawamoto K (2012) Protective effect of Bacillus anthracis surface protein EA1 against anthrax in mice. Biochem Biophys Res Commun 421(2):323–328. https://doi.org/10.1016/j.bbrc.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  20. Makam SS, Kingston JJ, Harischandra MS, Batra HV (2014) Protective antigen and extractable antigen 1 based chimeric protein confers protection against Bacillus anthracis in mouse model. Mol Immunol 59(1):91–99. https://doi.org/10.1016/j.molimm.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  21. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3(2):208IN1-218

    Article  Google Scholar 

  22. Shivakiran MS, Kingston JJ, Uppalapati S, Radhika M, Tuteja U, Murali HS, Batra HV (2013) Application of extractable antigen 1 (EA1) for specific detection of Bacillus anthracis cells. Int J Pharm Bio Sci 4:274–283

    Google Scholar 

  23. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  Google Scholar 

  24. NCCLS (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard. Clinical and Laboratory Standards Institute document M7-A7 [ISBN 1-56238-587-9]. Clinical and Laboratory Standards Institute, Pennsylvania

    Google Scholar 

  25. Kanthawong S, Bolscher JG, Veerman EC, van Marle J, de Soet HJ, Nazmi K, Wongratanacheewin S, Taweechaisupapong S (2012) Antimicrobial and anti-biofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents 9(1):39–44. https://doi.org/10.1016/j.ijantimicag.2011.09.010

    Article  CAS  Google Scholar 

  26. Welkos S, Little S, Friedlander A, Fritz D, Fellows P (2001) The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147:1677–1685. https://doi.org/10.1099/00221287-147-6-1677

    Article  CAS  PubMed  Google Scholar 

  27. Towbin H, Schoenenberger C, Ball R, Braun DG, Rosenfelder G (1984) Glycosphingolipid-blotting: an immunological detection procedure after separation by thin layer chromatography. J Immunol Methods 72(2):471–479

    Article  CAS  Google Scholar 

  28. Mongoh MN, Dyer NW, Stoltenow CL, Khaitsa ML (2008) Risk factors associated with anthrax outbreak in animals in North Dakota, 2005: a retrospective case-control study. Public Health Rep 123(3):352–359. https://doi.org/10.1177/003335490812300315

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kao LM, Bush K, Barnewall R, Estep J, Thalacker FW, Olson PH, Drusano GL, Minton N, Chien S, Hemeryck A, Kelley MF (2006) Pharmacokinetic considerations and efficacy of levofloxacin in an inhalational anthrax (postexposure) rhesus monkey model. Antimicrob Agents Chemother 50(11):3535–3542. https://doi.org/10.1128/AAC.00090-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glomski IJ, Corre JP, Mock M, Goossens PL (2007) Noncapsulated toxinogenic Bacillus anthracis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice. Infect Immun 75(10):4754–4761. https://doi.org/10.1128/IAI.00575-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cybulski RJ Jr, Sanz P, McDaniel D, Darnell S, Bull RL, O’Brien AD (2008) Recombinant Bacillus anthracis spore proteins enhance protection of mice primed with suboptimal amounts of protective antigen. Vaccine 26(38):4927–4939. https://doi.org/10.1016/j.vaccine.2008.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shlyakhov E, Shoenfeld Y, Gilburd B, Rubinstein E (2004) Evaluation of Bacillus anthracis extractable antigen for testing anthrax immunity. Clin Microbiol Infect 10(5):421–424. https://doi.org/10.1111/j.1469-0691.2004.00852.x

    Article  CAS  PubMed  Google Scholar 

  33. Binder P, Attre O, Boutin JP, Cavallo JD, Debord T, Jouan A, Vidal D (2003) Medical management of biological warfare and bioterrorism: place of the immunoprevention and the immunotherapy. Comp Immunol Microbiol Infect Dis 26(5–6):401–421. https://doi.org/10.1016/S0147-9571(03)00023-7

    Article  PubMed  Google Scholar 

  34. Mesnage S, Tosi-Couture E, Mock M, Gounon P, Fouet A (1997) Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23(6):1147–1155. https://doi.org/10.1046/j.1365-2958.1997.2941659.x

    Article  CAS  PubMed  Google Scholar 

  35. Candela T, Mignot T, Hagnerelle X, Haustant M, Fouet A (2005) Genetic analysis of Bacillus anthracis Sap S-layer protein crystallization domain. Microbiology 151:1485–1490. https://doi.org/10.1099/mic.0.27832-0

    Article  CAS  PubMed  Google Scholar 

  36. Wang YT, Oh SY, Hendrickx AP, Lunderberg JM, Schneewind O (2013) Bacillus cereus G9241 S-layer assembly contributes to the pathogenesis of anthrax-like disease in mice. J Bacteriol 195(3):596–605. https://doi.org/10.1128/JB.02005-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Missiakas D, Schneewind O (2017) Assembly and function of the Bacillus anthracis S-layer. Annu Rev Microbiol 71:79–98. https://doi.org/10.1146/annurev-micro-090816-093512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88. https://doi.org/10.1016/S1359-6446(05)03638-X

    Article  CAS  PubMed  Google Scholar 

  39. Cote CK, Rea KM, Norris SL, van Rooijen N, Welkos SL (2004) The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores. Microb Pathog 37(4):169–175. https://doi.org/10.1016/j.micpath.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  40. Bozue JA, Parthasarathy N, Phillips LR, Cote CK, Fellows PF, Mendelson I, Shafferman A, Friedlander AM (2005) Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb Pathog 38(1):1–12. https://doi.org/10.1016/j.micpath.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Kang TJ, Matthew JF, Matthew AW, Stephen H, Subhendu B, Les B, Alan SC (2005) Murine macrophages kill the vegetative form of Bacillus anthracis. Infec Immun 73(11):7495–7501

    Article  CAS  Google Scholar 

  42. Welkos SC, Cote K, Hahn UO, Shastak J, Jedermann J, Bozue G, Jung P et al (2011) Humanized θ-defensins (retrocyclins) enhance macrophage performance and protect mice from experimental anthrax infections. Antimicrob Agents Chemoth 55(9):4238–4250

    Article  CAS  Google Scholar 

  43. Guidi-Rontani C, Weber-Levy M, Labruyere E, Mock M (1999) Germination of Bacillus anthracis spores within alveolar macrophages. Mol Microbiol 31(1):9–17

    Article  CAS  Google Scholar 

  44. Ruthel G, Ribot WJ, Bavari S, Hoover TA (2004) Time-lapse confocal imaging of development of Bacillus anthracis in macrophages. J Infect Dis 189(7):1313–1316. https://doi.org/10.1086/382656

    Article  PubMed  Google Scholar 

  45. Tournier JN, Rossi Paccani S, Quesnel-Hellmann A, Baldari CT (2009) Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol Aspects Med 30(6):456–466. https://doi.org/10.1016/j.mam.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  46. Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA (1996) Development of novel vaccines against anthrax in man. J Biotechnol. 44(1–3):155–160. https://doi.org/10.1016/0168-1656(95)00092-5

    Article  CAS  PubMed  Google Scholar 

  47. Cote CK, Kaatz L, Reinhardt J, Bozue J, Tobery SA, Bassett AD, Sanz P, Darnell SC, Alem F, O’Brien AD, Welkos SL (2012) Characterization of a multi-component anthrax vaccine designed to target the initial stages of infection as well as toxaemia. J Med Microbiol 61:1380–1392. https://doi.org/10.1099/jmm.0.045393-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Enkhtuya J, Kawamoto K, Kobayashi Y, Uchida I, Rana N, Makino S (2006) Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids. Microbiology 152:3103–3110. https://doi.org/10.1099/mic.0.28788-0

    Article  CAS  PubMed  Google Scholar 

  49. Majumder S, Das S, Somani V, Makam SS, Joseph KJ, Bhatnagar R (2018) A bivalent protein r-PB, comprising PA and BclA immunodominant regions for comprehensive protection against Bacillus anthracis. Sci Rep. 8(1):7242. https://doi.org/10.1038/s41598-018-25502-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.M. is supported by Senior Research Scholarship of Lady Tata Memorial Trust, India. S.D. is funded by Senior Research Fellowship from Defence Research and Development Organization, India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Experiments carried out in this study were performed by SM, SD and SSM. SM, SD and JK were involved in designing of experiments, data interpretation and manuscript preparation. RB and VS was involved in challenge studies data interpretation and manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Joseph Kingston.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Edited by: Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Das, S., Kingston, J. et al. Functional characterization and evaluation of protective efficacy of EA752–862 monoclonal antibody against B. anthracis vegetative cell and spores. Med Microbiol Immunol 209, 125–137 (2020). https://doi.org/10.1007/s00430-019-00650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00650-5

Keywords

Navigation