Skip to main content
Log in

Path properties of the solution to the stochastic heat equation with Lévy noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We consider sample path properties of the solution to the stochastic heat equation, in \({\mathbb {R}}^d\) or bounded domains of \({\mathbb {R}}^d\), driven by a Lévy space–time white noise. When viewed as a stochastic process in time with values in an infinite-dimensional space, the solution is shown to have a càdlàg modification in fractional Sobolev spaces of index less than \(-\frac{d}{2}\). Concerning the partial regularity of the solution in time or space when the other variable is fixed, we determine critical values for the Blumenthal–Getoor index of the Lévy noise such that noises with a smaller index entail continuous sample paths, while Lévy noises with a larger index entail sample paths that are unbounded on any non-empty open subset. Our results apply to additive as well as multiplicative Lévy noises, and to light- as well as heavy-tailed jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Balan, R.M.: SPDEs with \(\alpha \)-stable Lévy noise: a random field approach. Int. J. Stoch. Anal. (2014). https://doi.org/10.1155/2014/793275

  2. Balan, R.M.: Integration with respect to Lévy colored noise, with applications to SPDEs. Stochastics 83(3), 363–381 (2015)

    Article  MATH  Google Scholar 

  3. Bally, V., Millet, A., Sanz-Solé, M.: Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23(1), 178–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bichteler, K., Jacod, J.: Random measures and stochastic integration. In: Kallianpur, G. (ed.) Theory and Application of Random Fields, pp. 1–18. Springer, Berlin (1983)

    MATH  Google Scholar 

  5. Bichteler, K., Lin, S.J.: On the stochastic Fubini theorem. Stoch. Stoch. Rep 54(3–4), 271–279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  7. Brzeźniak, Z., Goldys, B., Imkeller, P., Peszat, S., Priola, E., Zabczyk, J.: Time irregularity of generalized Ornstein–Uhlenbeck processes. C. R. Acad. Sci. Paris Ser. I 348(5–6), 273–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzeźniak, Z., Hausenblas, E.: Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145(3–4), 615–637 (2009)

    Article  MATH  Google Scholar 

  9. Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein–Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, L., Dalang, R.C.: Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput. 2(3), 316–352 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chong, C.: Lévy-driven Volterra equations in space and time. J. Theor. Probab. 30(3), 1014–1058 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chong, C.: Stochastic PDEs with heavy-tailed noise. Stoch. Process. Appl. 127(7), 2262–2280 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chong, C., Klüppelberg, C.: Integrability conditions for space-time stochastic integrals: theory and applications. Bernoulli 21(4), 2190–2216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  15. Dalang, R .C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous S. P. D. E’s. Electron. J. Probab. 4(6), 1–29 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  17. Èĭdel’man, S.D., Ivasišen, S.D.: Investigation of the Green matrix for a homogeneous parabolic boundary value problem. Trans. Moscow Math. Soc. 23, 179–242 (1970)

    MathSciNet  Google Scholar 

  18. Gihman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes, vol. 1. Springer, New York (1974)

    MATH  Google Scholar 

  19. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  20. Grisvard, P.: Caractérisation de quelques espaces d’interpolation. Arch. Ration. Mech. Anal. 25(1), 40–63 (1967)

    Article  MATH  Google Scholar 

  21. Hausenblas, E.: Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure. Electron. J. Probab. 10(46), 1496–1546 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20(55), 1–50 (2015)

    MATH  Google Scholar 

  23. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. American Mathematical Society, Providence (2014)

    Book  MATH  Google Scholar 

  24. Kotelenez, P.: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8(2), 139–151 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lebedev, V.A.: Behavior of random measures under filtration change. Theory Probab. Appl. 40(4), 645–652 (1996)

    Article  Google Scholar 

  26. Lebedev, V.A.: The Fubini theorem for stochastic integrals with respect to \({L}^0\)-valued random measures depending on a parameter. Theory Probab. Appl. 40(2), 285–293 (1996)

    Article  MathSciNet  Google Scholar 

  27. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  28. Marinelli, C., Röckner, M.: On maximal inequalities for purely discontinuous martingales in infinite dimensions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLVI, pp. 293–315. Springer, Cham (2014)

    Chapter  Google Scholar 

  29. Mytnik, L., Perkins, E.: Regularity and irregularity of \((1+\beta )\)-stable super-Brownian motion. Ann. Probab. 31(3), 1413–1440 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  32. Peszat, S., Zabczyk, J.: Time regularity of solutions to linear equations with Lévy noise in infinite dimensions. Stoch. Process. Appl. 123(3), 719–751 (2013)

    Article  MATH  Google Scholar 

  33. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2005)

    Book  Google Scholar 

  34. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton (1994)

    MATH  Google Scholar 

  35. Saint Loubert Bié, E.: Étude d’une EDPS conduite par un bruit poissonnien. Probab. Theory Relat. Fields 111(2), 287–321 (1998)

  36. Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. In: Dalang, R.C., Dozzi, M., Russo, F. (eds.) Seminar on Stochastic Analysis, Random Fields and Applications III. Birkhäuser, Basel (2002)

    Google Scholar 

  37. Sanz-Solé, M., Vuillermot, P.-A.: Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39(4), 703–742 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Van den Berg, M.: A Gaussian lower bound for the Dirichlet heat kernel. Bull. Lond. Math. Soc. 24(5), 475–477 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour, XIV–1984, pp. 265–439. Springer, Berlin (1986)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their careful reading of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Chong.

Additional information

This research is partially supported by the Swiss National Foundation for Scientific Research.

Appendix A: Integration with respect to random measures

Appendix A: Integration with respect to random measures

Just as Lévy processes are special instances of semimartingales, a Lévy noise as in (1.6) is a random measure as introduced in [4]. We give a short introduction into the integration theory associated to it, hereby concentrating on the main ideas and results that we need for our purposes. All details not mentioned or explained can be found in [4, 13, 25, 26]. Given a filtered probability space \((\Omega ,{\mathcal {F}},({\mathcal {F}}_t)_{t\in [0,T]},{\mathbb {P}})\) satisfying the usual conditions, consider a Polish space E (e.g., \(E=D\), the spatial domain in (1.1)), and denote by \({\mathcal {P}}\) the \(\sigma \)-field \({\mathcal {P}}_0\otimes {\mathcal {B}}(E)\), where \({\mathcal {P}}_0\) is the usual predictable \(\sigma \)-field. With an abuse of terminology, \({\mathcal {P}}\)-measurable mappings from \({\tilde{\Omega }} :=\Omega \times [0,T]\times E\) to \({\mathbb {R}}\) are again called predictable and their collection again denoted by \({\mathcal {P}}\).

Given a sequence \(({\tilde{\Omega }}_k)_{k\geqslant 1}\) in \({\mathcal {P}}\) satisfying \({\tilde{\Omega }}_k \uparrow {\tilde{\Omega }}\), a mapping \(M:{\mathcal {P}}_M:=\bigcup _{k\geqslant 1} {\mathcal {P}}|_{{\tilde{\Omega }}_k} \rightarrow L^p\) where \(p\in [0,+\infty )\) is called an \(L^p\)-random measure if for every sequence \((A_i)_{i\geqslant 1}\) of pairwise disjoint sets in \({\mathcal {P}}_M\) with \(\bigcup _{i\geqslant 1} A_i\in {\mathcal {P}}_M\), we have \(M(\bigcup _{i\geqslant 1} A_i) = \sum _{i\geqslant 1} M(A_i)\) in \(L^p\), and some additional “\(({\mathcal {F}}_t)_{t\in [0,T]}\)-adaptedness” conditions are satisfied. In our example of a Lévy noise on \([0,T]\times D\), we can take \({\tilde{\Omega }}_k = D\) if D is bounded, and \({\tilde{\Omega }}_k = [-k,k]^d\) if \(D={\mathbb {R}}^d\).

The stochastic integral of a simple integrand of the form \(S=\sum _{i=1}^r a_i \mathbb {1}_{A_i}\), where \(r\in {\mathbb {N}}\), \(a_i\in {\mathbb {R}}\) and \(A_i\in {\mathcal {P}}_M\), is defined in the canonical way by

$$\begin{aligned} \int _0^T\int _E S(t,x)\,M(\mathrm {d}t,\mathrm {d}x) := \sum _{i=1}^r a_i M(A_i). \end{aligned}$$

Denoting by \({\mathcal {S}}_M\) the collection of such simple integrands, the extension of the integral to a larger subset of \({\mathcal {P}}\) is carried out using the Daniell mean

$$\begin{aligned} \Vert H\Vert _{M,p} :=\Vert H\Vert _{M,p,{\mathbb {P}}}:= \sup _{S\in {\mathcal {S}}_M, |S|\leqslant |H|} \left\| \int _0^T\int _E S(t,x)\,M(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p}\, ,\quad H\in {\mathcal {P}}.\nonumber \\ \end{aligned}$$
(A.1)

A predictable process H is called p-integrable with respect to M if there exists a sequence \((S_n)_{n\geqslant 1}\) of simple integrands with \(\Vert H-S_n \Vert _{M,p} \rightarrow 0\) as \(n\rightarrow +\infty \). The collection of p-integrable processes is denoted by \(L^{1,p}(M)\) (or \(L^{1,p}(M,{\mathbb {P}})\) if we want to emphasize the probability measure). The stochastic integral of H with respect to M is then defined as the \(L^p\)-limit of \(\int _0^T\int _E S_n(t,x)\,M(\mathrm {d}t,\mathrm {d}x)\) (which exists and does not depend on the choice of \(S_n\)). In all notions introduced, the prefix p is suppressed if \(p=0\). The constructed integral obeys the dominated convergence theorem, see [4, (2.6)].

Theorem A.1

If \((H_n)_{n\geqslant 1}\) are predictable and converge pointwise to H, and \(|H_n|\leqslant H_0\) for all \(n\geqslant 1\) and some \(H_0\in L^{1,p}(M)\), then \(H_n, H \in L^{1,p}(M)\) and \(\Vert H-H_n\Vert _{M,p}\rightarrow 0\) as \(n\rightarrow +\infty \).

In this paper, we are particularly interested in the case where M is a linear combination of random measures of one of the following forms:

  1. (a)

    M is a predictable strict random measure, that is, almost every realization of M is a measure on \([0,T]\times E\) and \(t\mapsto \int _0^T \int _E \mathbb {1}_A(s,y) \mathbb {1}_{[0,t]}(s)\,M(\mathrm {d}s,\mathrm {d}y)\) is a predictable process for all \(A\in {\mathcal {P}}_M\).

  2. (b)

    \(M(\mathrm {d}t,\mathrm {d}x) = \int _{z\in {\mathbb {R}}} W(t,x,z)\,{\tilde{J}}(\mathrm {d}t,\mathrm {d}x,\mathrm {d}z)\), where J is an \(({\mathcal {F}}_t)_{t\in [0,T]}\)-Poisson random measure with intensity measure \(\nu (\mathrm {d}t,\mathrm {d}x,\mathrm {d}z)\), \({\tilde{J}} = J-\nu \), and \(W\mathbb {1}_{{\tilde{\Omega }}_k}\) is 1-integrable with respect to \({\tilde{J}}\) (a random measure on \(E\times {\mathbb {R}}\)) in the sense above for every \(k\geqslant 1\).

  3. (c)

    M is a strict random measure of the form \(M(\mathrm {d}t,\mathrm {d}x) = \int _{z\in {\mathbb {R}}} W(t,x,z)\,J(\mathrm {d}t,\mathrm {d}x, \mathrm {d}z)\) where \(W\mathbb {1}_{{\tilde{\Omega }}_k}\) is integrable with respect to J for every \(k\geqslant 1\).

In these cases, the Daniell mean can be computed (or estimated) explicitly.

Lemma A.2

Let \(\Vert X\Vert _{L^p} = {\mathbb {E}}[|X|^p]\) for \(0<p<1\) and \(\Vert X\Vert _{L^p} = ({\mathbb {E}}[|X|^p])^{\frac{1}{p}}\) be the usual \(L^p\)-norm for \(p\geqslant 1\).

  1. 1.

    In the case (a) above, we have for every \(0<p<+\infty \) and \(H\in {\mathcal {P}}\),

    $$\begin{aligned} \Vert H\Vert _{M,p} = \left\| \int _0^T \int _E |H(t,x)|\,|M|(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p}, \end{aligned}$$
    (A.2)

    where |M| is the total variation measure of M.

  2. 2.

    In the case (b) above, there exist for every \(p\geqslant 1\) constants \(c_p, C_p>0\) such that for all \(H\in {\mathcal {P}}\),

    $$\begin{aligned}&c_p \left\| \left( \int _0^T \int _E H^2(t,x)\,[M](\mathrm {d}t,\mathrm {d}x) \right) ^{\frac{1}{2}} \right\| _{L^p} \\&\quad \leqslant \Vert H\Vert _{M,p}\leqslant C_p \left\| \left( \int _0^T \int _E H^2(t,x)\,[M](\mathrm {d}t,\mathrm {d}x) \right) ^{\frac{1}{2}} \right\| _{L^p}, \end{aligned}$$

    where \([M](\mathrm {d}t,\mathrm {d}x) = \int _{z\in {\mathbb {R}}} W^2(t,x,z)\,J(\mathrm {d}t,\mathrm {d}x,\mathrm {d}z)\) is the quadratic variation measure of M. In particular,

    $$\begin{aligned} \Vert H\Vert _{M,p}\leqslant C_p \left( \int _0^T\int _E\int _{\mathbb {R}}\Vert H(t,x) W(t,x,z)\Vert _{L^p}^p\,\nu (\mathrm {d}t,\mathrm {d}x,\mathrm {d}z)\right) ^{\frac{1}{p}}. \end{aligned}$$
    (A.3)
  3. 3.

    In the case (c) above, we have for \(0<p\leqslant 1\) and \(H\in {\mathcal {P}}\),

    $$\begin{aligned} \Vert H\Vert _{M,p} \leqslant \int _0^T \int _E \int _{\mathbb {R}}\Vert H(t,x)W(t,x,z)\Vert _{L^p}\, \nu (\mathrm {d}t,\mathrm {d}x,\mathrm {d}z). \end{aligned}$$

Proof

For the first statement, the “\(\leqslant \)”-part follows from

$$\begin{aligned} \left| \int _0^T\int _E S(t,x)\,M(\mathrm {d}t,\mathrm {d}x)\right|&\leqslant \int _0^T\int _E |S(t,x)|\,|M|(\mathrm {d}t,\mathrm {d}x)\\&\leqslant \int _0^T\int _E |H(t,x)|\,|M|(\mathrm {d}t,\mathrm {d}x) \end{aligned}$$

for all S with \(|S|\leqslant |H|\). For the “\(\geqslant \)”-part, observe that the right-hand side of (A.2) equals \(\Vert H\Vert _{|M|,p}\) by dominated convergence. Next, consider the measure \(\mu (\mathrm {d}\omega ,\mathrm {d}t,\mathrm {d}x) = M(\omega ,\mathrm {d}t,\mathrm {d}x)\,{\mathbb {P}}(\mathrm {d}\omega )\) on \({\mathcal {P}}\) and let \(D(\omega ,t,x)\) be its Radon–Nikodym derivative with respect to \(|\mu |(\mathrm {d}\omega ,\mathrm {d}t,\mathrm {d}x)\). Then D is predictable, \(|D|\equiv 1\) and \(|M|(\omega ,\mathrm {d}t,\mathrm {d}x)=D(\omega ,t,x)\,M(\omega ,\mathrm {d}t,\mathrm {d}x)\). Hence,

$$\begin{aligned}&\sup _{S\in {\mathcal {S}}_M, |S|\leqslant |H|} \left\| \int _0^T\int _E S(t,x)\,|M|(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p}= \sup _{S\in {\mathcal {S}}_M, 0\leqslant S\leqslant |H|} \left\| \int _0^T\int _E S(t,x)\,|M|(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p} \\&\qquad = \sup _{S\in {\mathcal {S}}_M, 0\leqslant S\leqslant |H|} \left\| \int _0^T\int _E S(t,x)D(t,x)\,M(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p}\\&\qquad \leqslant \sup _{S\in {\mathcal {S}}_M, 0\leqslant S\leqslant |H|} \left\| \int _0^T\int _E S(t,x)\,M(\mathrm {d}t,\mathrm {d}x) \right\| _{L^p} \leqslant \Vert H\Vert _{M,p}, \end{aligned}$$

and (A.2) is proved

For the second statement, we observe that \(t\mapsto \int _0^T\int _E S(s,y)\mathbb {1}_{[0,t]}(s)\,M(\mathrm {d}s,\mathrm {d}y)\) is a local martingale for all \(S\in {\mathcal {S}}_M\), see [4, Proposition 4.9(b)]. So the statement for \(S\in {\mathcal {S}}_M\) follows from the Burkholder–Davis–Gundy inequalities. The general case is again a consequence of the dominated convergence theorem. Inequality (A.3) can be proved along the lines of the third statement, which we now establish.

Let \((T_i,X_i,Z_i)_{i\geqslant 1}\) be the points of J in \([0,T]\times E\times {\mathbb {R}}\). Then, using \((x+y)^p \leqslant x^p+y^p\) for \(x,y>0\) and \(0<p\leqslant 1\), we get

$$\begin{aligned}&{\mathbb {E}}\left[ \left| \int _0^T \int _E S(t,x)\,M(\mathrm {d}t,\mathrm {d}x) \right| ^p \right] = {\mathbb {E}}\left[ \left| \sum _{i\geqslant 1} S(T_i,X_i)W(T_i,X_i,Z_i) \right| ^p \right] \\&\qquad \leqslant {\mathbb {E}}\left[ \sum _{i\geqslant 1} | S(T_i,X_i)W(T_i,X_i,Z_i) |^p \right] \\&\qquad \leqslant {\mathbb {E}}\left[ \int _0^T \int _E \int _{\mathbb {R}}|H(t,x)W(t,x,z)|^p\,J(\mathrm {d}t,\mathrm {d}x,\mathrm {d}z) \right] \\&\qquad ={\mathbb {E}}\left[ \int _0^T \int _E \int _{\mathbb {R}}|H(t,x)W(t,x,z)|^p\,\nu (\mathrm {d}t,\mathrm {d}x,\mathrm {d}z) \right] , \end{aligned}$$

and the proof is complete. \(\square \)

With the help of the Daniell mean, one can obtain the following stochastic Fubini theorem.

Theorem A.3

Let \((A,{\mathcal {A}},\mu )\) be a \(\sigma \)-finite measure space, M be an \(L^p\)-random measure for some \(p>0\), and H be a \({\mathcal {P}}\otimes {\mathcal {A}}\)-measurable function.

  1. 1.

    If \(p\geqslant 1\) and \(\int _A \Vert H(\cdot ,\cdot ,a)\Vert _{M,p}\,\mu (\mathrm {d}a)<+\infty \), then

    $$\begin{aligned} \int _A \left( \int _0^T \int _E H(t,x,a)\, M(\mathrm {d}t,\mathrm {d}x)\right) \,\mu (\mathrm {d}a) \end{aligned}$$

    and

    $$\begin{aligned} \int _0^T \int _E \left( \int _A H(t,x,a)\,\mu (\mathrm {d}a) \right) \,M(\mathrm {d}t,\mathrm {d}x) \end{aligned}$$

    are equal almost surely, and all integrals involved are well defined.

  2. 2.

    If \(0<p\leqslant 1\) and M is a random measure as in (c) above, the conclusion of the first part continues to hold if

    $$\begin{aligned} \int _0^T\int _E \int _{\mathbb {R}}\left\| \int _A |H(t,x,a)|\,\mu (\mathrm {d}a) |W(t,x,z)| \right\| _{L^p} \,\nu (\mathrm {d}t,\mathrm {d}x,\mathrm {d}z)<+\infty .\qquad \end{aligned}$$
    (A.4)

The first part has been proved in [26, Theorem 2] for \(p=1\) (see also [5] for processes indexed only by time), but is obviously also valid for \(p>1\) by the monotonicity of \(L^p\)-norms. In particular, Lemma A.2 can be used to verify the integrability assumption. The second part follows from the ordinary Fubini theorem (M is a strict random measure here) together with an argument as in the proof of third part of Lemma A.2.

A last result that we need relates to the possibility of recovering \(L^2\)-integrability from \(L^p\)-integrability, \(0\leqslant p<2\), upon an equivalent change of probability measure. For semimartingales, this result is well known, see [33, Chapter IV, Theorem 34], for example. For random measures, it is proved in [25, Corollary of Theorem 2].

Theorem A.4

If M is an \(L^p\)-random measure and \(H\in L^{1,p}(M)\) for some \(0\leqslant p<2\), then there exists a probability measure \({\mathbb {Q}}\) that is equivalent to \({\mathbb {P}}\) on \({\mathcal {F}}\) such that \(\frac{\mathrm {d}{\mathbb {Q}}}{\mathrm {d}{\mathbb {P}}}\) is bounded, \(\frac{\mathrm {d}{\mathbb {P}}}{\mathrm {d}{\mathbb {Q}}} \in L^{\frac{p}{2-p}}({\mathbb {P}})\), M is an \(L^2\)-random measure under \({\mathbb {Q}}\), and \(H\in L^{1,2}(M,{\mathbb {Q}})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, C., Dalang, R.C. & Humeau, T. Path properties of the solution to the stochastic heat equation with Lévy noise. Stoch PDE: Anal Comp 7, 123–168 (2019). https://doi.org/10.1007/s40072-018-0124-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0124-y

Keywords

Mathematics Subject Classification

Navigation