Skip to main content
Log in

Reedy Diagrams in V-Model Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We study the category of Reedy diagrams in a \(\mathscr {V}\)-model category. Explicitly, we show that if K is a small category, \(\mathscr {V}\) is a closed symmetric monoidal category and \(\mathscr {C}\) is a closed \(\mathscr {V}\)-module, then the diagram category \(\mathscr {V}^K\) is a closed symmetric monoidal category and the diagram category \(\mathscr {C}^K\) is a closed \(\mathscr {V}^K\)-module. We then prove that if further K is a Reedy category, \(\mathscr {V}\) is a monoidal model category and \(\mathscr {C}\) is a \(\mathscr {V}\)-model category, then with the Reedy model category structures, \(\mathscr {V}^K\) is a monoidal model category and \(\mathscr {C}^K\) is a \(\mathscr {V}^K\)-model category provided that either the unit 1 of \(\mathscr {V}\) is cofibrant or \(\mathscr {V}\) is cofibrantly generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barwick, C.: On left and right model categories and left and right Bousfield localizations. Homol. Homotopy. Appl. 12, 245–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, C., Moerdijk, I.: On an extension of the notion of Reedy category. Math. Z. 269(34), 9771004 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Borceux, F.: Handbook of Categorical Algebra 2, Categories and Structures, Encyclopedia of Mathematics and its Applications, vol. 51. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  4. Day, B.J.: On Closed Categories of Functors. Lecture Notes in Mathematics, 304. Springer, Berlin (1972)

    MATH  Google Scholar 

  5. Dwyer, W.G., Hirschhorn, P.S., Kan, D.M.: Model categories and more general abstract homotopy theory: a work in what we like to think of as progress (preprint)

  6. Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, Modules and Algebras in Stable Homotopy Theory. Surveys Monographs, vol. 47. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  7. Goerss, P., Jardine, J.: Simplicial Homotopy Theory. Progress in Mathematics, 174. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  8. Goerss, P., Schemmerhorn, K.: Model categories and simplicial methods. arXiv:math/0609537v2 [math.AT] (28 Nov 2006)

  9. Hirschhorn, P.S.: Model Categories and Their Localizations, vol. 99. Surveys and Monographs of the American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  10. Hovey, M.: Monoidal model categories. arXiv:math/9803002v1 [math.AT] (28 Feb 1998)

  11. Hovey, M.: Model Categories, vol. 63. Surveys and Monographs of the American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  12. Hovey, M., Shipley, B., Smith, J.: Symmetric spectra. J. Am. Math. Soc. 13(1), 149208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Janelidze, G., Kelly, G.M.: A note on actions of a monoidal category. Theory Appl. Categ. 9, 61–91 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Kelly, G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ. 10, 1–136 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  16. Quillen, D.: Homotopical Algebra. Lecture Notes in Mathemetics 43. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  17. Riehl, E.: Categorical Homotopy Theory. New Mathematical Monographs, vol. 24. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  18. Riehl, E., Verity, D.: The theory and practice of Reedy categories. Theory Appl. Categ. 29, 256–301 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Schwede, S., Shipley, B.: Algebras and modules in monoidal model categories. In: Proceedings of London Mathematical Society, vol. 80 (2000)

  20. Schwede, S., Shipley, B.: Stable model categories are categories of modules. Topology 42(1), 103–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. White, D.: Model structures on commutative monoids in general model categories. J. Pure Appl. Algebra 221, 3124–3168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and the reviewer for their thoughtful ideas and constructive comments. Their suggestions substantially improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Ghazel.

Additional information

Richard Garner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazel, M., Kadhi, F. Reedy Diagrams in V-Model Categories. Appl Categor Struct 27, 549–566 (2019). https://doi.org/10.1007/s10485-019-09566-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-019-09566-w

Keywords

Mathematics Subject Classification

Navigation