Skip to main content
Log in

Cooperative advertising models under different channel power structure

  • S.I.: RealCaseOR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Cooperative (co-op) advertising is an arrangement between manufacturer and retailer, where two members initiate their respective advertising to help develop brand, motivate sales, and other purposes. This paper focuses on cooperative advertising in a supply chain consisting of one manufacturer and one retailer. As two basic elements of a supply chain, the channel power structure and information structure affect the firm’s pricing and advertising decisions. We attempt to investigate how they optimally decide their marginal returns and advertising investments. Utilizing the Stackelberg game theory, we derive the equilibrium of five scenarios in two different cases, i.e., (1) either the manufacturer or the retailer is acting as the Stackelberg leader and (2) whether the Stackelberg leader knows the advertising investment of his follower. Then we make a comparison and obtain some managerial implications as follows: (1) the supply chain power structure and the relative advertising effectiveness coefficient exert great influence on the optimal supply chain decisions, (2) the supply chain members’ profit is not parallel to their corresponding power structure, if the retailer’s advertising effectiveness is greater than the manufacturer’s, the Manufacturer-dominated Stackelberg game is a win–win strategy, and vice versa, (3) the dominant member can improve his and the overall performance of the supply chain by having the advertising information of the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aust, G., & Buscher, U. (2012). Vertical cooperative advertising and pricing decisions in a manufacturer–retailer supply chain: A game-theoretic approach. European Journal of Operational Research,223, 473–482.

    Google Scholar 

  • Aust, G., & Buscher, U. (2014a). Cooperative advertising models in supply chain management: A review. European Journal of Operational Research,234(1), 1–14.

    Google Scholar 

  • Aust, G., & Buscher, U. (2014b). Vertical cooperative advertising in a retailer duopoly. Computers & Industrial Engineering,72, 247–254.

    Google Scholar 

  • Cao, E., Ma, Y., & Wan, C. (2013). Contracting with asymmetric cost information in a dual-channel supply chain. Operations Research Letters,41(4), 410–414.

    Google Scholar 

  • Gielens, K., Geyskens, I., Deleersnyder, B., et al. (2018). The new regulator in town: The effect of Walmart’s sustainability mandate on supplier shareholder value. Journal of Marketing,82(2), 124–141.

    Google Scholar 

  • Hong, X. P., & Xu, L. (2015). Joint advertising, pricing and collection decisions in a closed-loop supply chain. International Journal of Production Economics,167, 12–22.

    Google Scholar 

  • Huang, Z., & Li, S. X. (2001). Co-op advertising models in a manufacturer–retailer supply chain: A game theory approach. European Journal of Operational Research,135(3), 527–544.

    Google Scholar 

  • Huang, Z., Li, S. X., & Mahajan, V. (2002). An analysis of manufacturer–retailer supply chain coordination in cooperative advertising. Decision Sciences,33, 469–494.

    Google Scholar 

  • Ji, X. (2006). Supply chain contract designing with retailer promotional effort. Chinese Journal of Management Science,14(4), 46–49.

    Google Scholar 

  • Jørgensen, S., & Zaccour, G. (2014). A survey of game-theoretic models of cooperative advertising. European Journal of Operational Research,237(1), 1–14.

    Google Scholar 

  • Li, S. X. (2002). Cooperative advertising, game theory and manufacturer–retailer supply chains. Operations Research,30, 347–3571.

    Google Scholar 

  • Liu, B., Cai, G., & Tsay, A. (2014). Advertising in asymmetric competing supply chains. Production and Operations Management,23(11), 1845–1858.

    Google Scholar 

  • Ray, S. (2005). An integrated operation–marketing model for innovative products and services. International Journal of Production Economics,95, 327–345.

    Google Scholar 

  • Shen, Y., & Willems, S. P. (2012). Coordinating a channel with asymmetric cost information and the manufacturer’s optimality. International Journal of Production Economics,135(1), 125–135.

    Google Scholar 

  • Shi, K., Sheng, Z., & Ma, H. (2014). The decision of manufacturer’s quality investment and retailer’s selling effort under bilateral uncertainty. Chinese Journal of Management Science,01, 37–44.

    Google Scholar 

  • Szmerekovsky, J. G., & Zhang, J. (2009). Pricing and two-tier advertising with one manufacturer and one retailer. European Journal of Operational Research,192, 904–917.

    Google Scholar 

  • Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science,48(8), 992–1007.

    Google Scholar 

  • Xie, J., & Neyret, A. (2009). Co-op advertising and pricing models in manufacturer–retailer supply chains. Computers & Industrial Engineering,56(4), 1375–1385.

    Google Scholar 

  • Xie, J., & Wei, J. (2009). Coordinating advertising and pricing in a manufacturer–retailer channel. European Journal of Operational Research,2009(197), 785–791.

    Google Scholar 

  • Yan, R. (2010). Cooperative advertising, pricing strategy and firm performance in the e-marketing age. Journal of the Academy of Marketing Science,38, 510–519.

    Google Scholar 

  • Yao, Z., Stephen, C., & Leung, H. (2008). Manufacturer’s revenue-sharing contract and retail competition. European Journal of Operational Research,186, 637–651.

    Google Scholar 

  • Yue, J., Austin, J., Wang, M.-C., & Huang, Z. (2006). Coordination of cooperative advertising in a two-level supply chain when manufacturer offers discount. European Journal of Operational Research,168, 65–85.

    Google Scholar 

  • Zhang, J. (2004). A coordinating contract of supply chain with sale-effort dependent demand. Chinese Journal of Management Science,12(4), 50–56.

    Google Scholar 

  • Zhang, J., & Gou, Q. (2013). Supply chain coordination through cooperative advertising with reference price effect. Omega,41, 345–353.

    Google Scholar 

  • Zhang, T., & Liang, L. (2012). Pricing and sales efforts decisions for a supply chain under different channel power structures and information structures. Chinese Journal of Management Science,12(4), 50–56.

    Google Scholar 

  • Zhao, Y., Wang, S., Cheng, T. C. E., et al. (2010). Coordination of supply chains by option contracts: A cooperative game theory approach. European Journal of Operational Research,207(2), 668–675.

    Google Scholar 

  • Zhao, J., Wei, J., & Li, Y. J. (2014). Pricing decisions for substitutable products in a two-echelon supply chain with firms’ different channel powers. International Journal of Production Economics,153, 243–252.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department Editor, the Senior Editor and the anonymous reviewers for their helpful comments and suggestions. We are also thankful for Dr. Chang Fang’ advice on how to revise the paper. This paper would like to acknowledge the support by the National Natural Science Foundation of Anhui Province under Grant 1608085MG152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongfei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2.1

Setting the first derivation \( \partial \prod\nolimits_{s} /\partial u_{s} = 0,\partial \prod\nolimits_{s} /\partial a = 0,\partial \prod\nolimits_{s} /\partial A = 0 \),we get \( u_{s} = M_{c} /2 \), \( \sqrt a = k_{r} /8M_{c}^{2} \), \( \sqrt A = k_{m} M_{c}^{2} /8 \)

The Hesse matrix of \( \prod\nolimits_{s} \) is

$$ H = \left( {\begin{array}{*{20}c} { - 2\sqrt A k_{m} - 2\sqrt a k_{r} } & {\frac{{k_{r} (M_{c} - u_{s} )}}{2\sqrt a } - \frac{{k_{r} u_{s} }}{2\sqrt a }} & {\frac{{k_{m} (M_{c} - u_{s} )}}{2\sqrt A } - \frac{{k_{m} u_{s} }}{2\sqrt A }} \\ {\frac{{k_{r} (M_{c} - u_{s} )}}{2\sqrt a } - \frac{{k_{r} u_{s} }}{2\sqrt a }} & { - \frac{{k_{r} (M_{c} - u_{s} )u_{s} }}{{4a^{3/2} }}} & 0 \\ {\frac{{k_{m} (M_{c} - u_{s} )}}{2\sqrt A } - \frac{{k_{m} u_{s} }}{2\sqrt A }} & 0 & { - \frac{{k_{m} (M_{c} - u_{s} )u_{s} }}{{4A^{3/2} }}} \\ \end{array} } \right) $$

One easy proves that if \( u_{s} = M_{c} /2 \), then

$$ \left| {H_{1} } \right| = - 2[\sqrt A k_{m} + \sqrt a k_{r} ] < 0,\quad\left| {H_{2} } \right| = k_{r} M_{c}^{2} \frac{{k_{m} \sqrt A + k_{r} \sqrt a }}{{8a^{3/2} }} > 0,\quad\left| H \right| = \frac{{ - k_{m} k_{r} M_{c}^{4} (k_{m} \sqrt A + k\sqrt a_{r} )}}{{128a^{3/2} A^{3/2} }} < 0. $$
$$ \pi_{s} = (u_{m} + u_{r} )D - A - a = u_{s} (M_{c} - u_{s} )k_{r} (\sqrt a + \sqrt k \sqrt A ) - A - a $$

We set \( {{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial u_{s} }}} \right. \kern-0pt} {\partial u_{s} }} = k_{r} M_{c} (\sqrt a + \sqrt k \sqrt A ) - 2k_{r} (\sqrt a + \sqrt k \sqrt A )u_{s} = 0 \)

$$ {{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \sqrt a }}} \right. \kern-0pt} {\partial \sqrt a }} = u_{s} (M_{c} - u_{s} )k_{r} - 2\sqrt a = 0 $$
$$ {{\partial \pi_{s} } \mathord{\left/ {\vphantom {{\partial \pi_{s} } {\partial \sqrt A }}} \right. \kern-0pt} {\partial \sqrt A }} = u_{s} (M_{c} - u_{s} )k_{r} \sqrt k - 2\sqrt A = 0 $$

To set simultaneous equations, we get

$$ u_{s}^{Co} = M_{c} /2,\quad\sqrt {a^{Co} } = M_{c}^{2} k_{r} /8,\quad\sqrt {A^{Co} } = M_{c}^{2} k_{m} /8,\quad \prod\nolimits_{s}^{Co} = M_{c}^{4} k_{r}^{2} (1 + k)/64. $$

Proof of Proposition 2.2

It’s easy to differentiate

$$ \frac{{\partial u_{s}^{Co} }}{\partial k} = 0;\quad\frac{{\partial a^{Co} }}{{\partial k_{r} }} = \frac{{M_{c}^{4} k_{r} }}{32} > 0;\quad\frac{{\partial a^{Co} }}{{\partial k_{m} }} = 0;\quad\frac{{\partial A^{Co} }}{{\partial k_{m} }} = \frac{{M_{c}^{4} k_{m} }}{32} > 0;\quad\frac{{\partial A^{Co} }}{{\partial k_{r} }} = 0. $$

Proof of Proposition 2.3

Because \( \partial \prod\nolimits_{m}^{Ms} /\partial A^{Ms} = u_{m}^{Ms} k_{m} (M_{c} - u_{m}^{Ms} )/4\beta \sqrt A - 1 \) and

$$ \frac{{\partial \prod\nolimits_{m}^{Ms} }}{{\partial u_{m}^{Ms} }} = \frac{{M_{c} - 2u_{m}^{Ms} }}{2} \cdot \left[\frac{{k_{r}^{2} (M_{c} - u_{m}^{Ms} )^{2} }}{8} + k_{m} \sqrt {A^{Ms} } \right] - \frac{{u_{m}^{Ms} (M_{c} - u_{m}^{Ms} )}}{2} \cdot \left[\frac{{k_{r}^{2} (M_{c} - u_{m}^{Ms} )}}{4}\right], $$

we utilize the first-order condition with respect to \( u_{m}^{Ms} \) and obtain the Eq. (A1)

$$ (M_{c} - u_{m}^{Ms} )(M_{c} - 4u_{m}^{Ms} ) + 2ku_{m}^{Ms} (M_{c} - 2u_{m}^{Ms} ) = 0 $$
(A1)

The solution (A1) is \( u_{m}^{Ms} = \Theta_{ \pm }^{MS} (k) \cdot M_{c} \) where \( \Theta_{ \pm }^{Ms} (k) = \frac{{(5 - 2k) \pm \sqrt {(2k - 1)^{2} + 8} }}{8(1 - k)} \). According to (A1), then \( u_{m}^{Ms} \) must satisfy \( M_{c} /4 < u_{m}^{Ms} < M_{c} /2 \), that is to say \( 1/4 < \Theta_{ \pm }^{Ms} (k) < 1/2 \). Because of \( \Theta_{ + }^{Ms} (k) - \frac{1}{2} = \frac{{(1 + 2k) + \sqrt {(2k - 1)^{2} + 8} }}{8(1 - k)} \) and \( \Theta_{ + }^{Ms} (k) - \frac{1}{4} = \frac{{3 + \sqrt {(2k - 1)^{2} + 8} }}{8(1 - k)} \), we can easily prove that \( \Theta_{ + }^{Ms} (k) > 1/2 \) or \( \Theta_{ + }^{Ms} (k) < 1/4 \). So \( \Theta_{ + }^{Ms} (k) \) isn’t the result of (A1).

Due to

$$ \Theta_{ - }^{Ms} (k) - \frac{1}{2} = - \frac{1}{{(1 + 2k) + \sqrt {(2k - 1)^{2} + 8} }}\Theta_{ - }^{Ms} (k) - \frac{1}{4} = \frac{1}{{2[3 + \sqrt {(2k - 1)^{2} + 8} ]}} $$

so \( \Theta_{ - }^{Ms} (k) \) is the result of the Eq. (A1).

The Hesse matrix of \( \prod\nolimits_{m}^{Ms} \) is

$$ H = \left( \begin{aligned} &- \frac{{(M_{c} - u_{m} )u_{m} k_{m} }}{{8A^{3/2} }} \, \frac{{(M_{c} - 2u_{m} )k_{m} }}{4\sqrt A } \hfill \\ &\quad\frac{{(M_{c} - 2u_{m} )k_{m} }}{4\sqrt A } \, - \sqrt A k_{m} - \frac{{3(M_{c} - u_{m} )^{2} k_{r}^{2} }}{8} + \frac{{3(M_{c} - u_{m} )u_{m} k_{r}^{2} }}{8} \hfill \\ \end{aligned} \right) $$
$$ \left| {H_{1} } \right| = - \frac{{(M_{c} - u_{m} )u_{m} k_{m} }}{{8A^{3/2} }},\quad\left| {H_{2} } \right| = \frac{{M_{c}^{2} k_{r}^{2} }}{4}[ - (1 - 6\theta + 6\theta^{2} )k + (1 - 2\theta )(1 - \theta )]. $$

It is easy to prove that \( \left| {H_{1} } \right| < 0,\left| {H_{2} } \right| > 0 \) when \( u_{m} = \theta^{Ms} M_{c} ,\sqrt A = k_{m} \theta^{Ms} (1 - \theta^{Ms} )M_{c}^{2} /4 \). That is to say, \( \Theta_{ - }^{Ms} (k) \) is the optimal solution for \( \prod\nolimits_{m}^{Ms} \).The equilibrium solution (Ms) can easily be found based on \( u_{m}^{Ms} = \theta^{Ms} M_{c} \) .

Proof of Proposition 2.4

Because \( \frac{{\partial \theta^{Ms} }}{\partial k} = \frac{{4[\sqrt {(2k - 1)^{2} + 8} - (2k - 1)]}}{{[5 - 2k + \sqrt {(2k - 1)^{2} + 8} ]^{2} \sqrt {(2k - 1)^{2} + 8} }} \), we have \( \partial \theta^{Ms} /\partial k > 0 \). Based on this property, it is easy to prove that \( \partial u_{m}^{Ms} /\partial k > 0,\partial u_{r}^{Ms} /\partial k < 0 \) and \( \partial A^{Ms} /\partial k > 0,\partial a^{Ms} /\partial k < 0 \).

From Proposition 2.3, we have

$$ \frac{{\partial \psi^{Ms} }}{\partial k} = \frac{{ - 32(3 - 2k + \sqrt {9 - 4k + 4k^{2} } )}}{{(1 + k)^{2} \sqrt {9 - 4k + 4k^{2} } (5 - 2k + \sqrt {9 - 4k + 4k^{2} } )^{5} }} \cdot [h_{1} (k) + h_{2} (k)], $$

where

$$ \begin{aligned} & h_{1} (k) = (1 - k)\sqrt {9 - 4k + 4k^{2} } (27 - 12k + 18k^{2} + 4k^{3} ) \\ & h_{2} (k) = 81 - 139k + 140k^{2} - 66k^{3} + 24k^{4} + 8k^{5} . \\ \end{aligned} $$

It is easy to prove \( 27 - 12k + 18k^{2} + 4k^{3} > 0 \) for \( k \ge 0 \).

If \( k < 1 \), because \( h_{1} (k) > 2(1 - k)(27 - 12k + 18k^{2} + 4k^{3} ) \), then

$$ h_{1} (k) + h_{2} (k) > (135 - 217k + 200k^{2} ) + ( - 94k^{3} + 16k^{4} + 8k^{5} ). $$

Since \( \partial ( - 94k^{3} + 16k^{4} + 8k^{5} )/\partial k = 2k^{2} ( - 141 + 32k + 20k^{2} ) < 0 \), we have \( - 94k^{3} + 16k^{4} + 8k^{5} > - 70 \) and \( h_{1} (k) + h_{2} (k) > 65 - 217k + 200k^{2} \), therefore \( h_{1} (k) + h_{2} (k) > 0 \).

If \( k \ge 1 \), we have \( h_{1} (k) < 0 \).

Since \( \partial h_{2} (k)/\partial k > 141k - 198k^{2} + 96k^{3} + 40k^{4} > 0 \), so \( h_{2} (k) > h_{2} (1) = 48 > 0 \).

Because \( [h_{2} (k)]^{2} - [h_{1} (k)]^{2} = 8k( - 81 + 299k - 95k^{2} + 113k^{3} + 48k^{4} + 4k^{5} ) > 0 \), we can prove that \( h_{1} (k) + h_{2} (k) > 0 \) for \( k \ge 1 \).

Proof of Proposition 2.5

$$ \frac{{\partial \prod\nolimits_{m}^{Mst} }}{{\partial A^{Mst} }} = \frac{{k_{m} u_{m}^{Mst} (M_{c} - u_{m}^{Mst} )}}{{4\sqrt {A^{Mst} } }} - 1 = 0 $$
(A2)
$$ \frac{{\partial \prod\nolimits_{m}^{Mst} }}{\partial t} = \frac{{k_{r}^{2} (M_{c} - u_{m}^{Mst} )^{3} }}{{64t^{3} }}[ - (M_{c} + 3u_{m}^{Mst} )t + 2(M_{c} - u_{m}^{Mstt} )] = 0 $$
(A3)
$$ \begin{aligned} &\frac{{\partial \prod\nolimits_{m}^{Mst} }}{{\partial u_{m}^{Mst} }} = \frac{{k_{r}^{2} (M_{c} - u_{m}^{Mst} )^{2} }}{16t}(M_{c} - 4u_{m}^{Mst} ) + k_{m} \frac{{M_{c} - 2u_{m}^{Mst} }}{2} \cdot \sqrt {A^{Mst} } \hfill \\ & + (1 - t^{Mst} )\frac{{k_{r}^{2} (M_{c} - u_{m}^{Mst} )^{3} }}{{16t^{2} }} = 0 \hfill \\ \end{aligned} $$
(A4)

Substitute the Eqs. (A2) and (A3) into A4, we have

$$ (M_{c} + 3u_{m}^{Mst} )(M_{c} - 3u_{m}^{Mst} ) + 8ku_{m}^{Mst} (M_{c} - 2u_{m}^{Mst} ) = 0. $$
(A5)

Thus, under the condition \( M_{c} - u_{m}^{Mst} > 0 \), we have \( M_{c} /3 < u_{m}^{Mst} < M_{c} /2 \).

Solving the Eq. (A5), we have \( u_{m}^{Mst} = \Theta_{ \pm }^{Mst} (k)M_{c} \), where \( \Theta_{ \pm }^{Mst} = \frac{{4k \pm \sqrt {16k^{2} + 16k + 9} }}{(9 + 16k)} \).

Since \( \Theta_{ - }^{Mst} (k) = \frac{ - 16k - 9}{{(9 + 16k)(4k + \sqrt {16k^{2} + 16k + 9} )}} < 0 \), \( \Theta_{ - }^{Mst} (k) \) isn’t feasible solution of the Eq. (A5).

Because

$$ \Theta_{ + }^{Mst} - \frac{1}{3} = \frac{{\sqrt {144k^{2} + 144k + 81} - \sqrt {16k^{2} + 72k + 81} }}{3(9 + 16k)},\quad\Theta_{ + }^{Mst} - \frac{1}{2} = \frac{{\sqrt {64k^{2} + 64k + 36} - \sqrt {64k^{2} + 144k + 81} }}{2(9 + 16k)} $$

so \( 1/3 < \Theta_{ + }^{Mst} < 1/2 \).

We denote \( \theta^{Mst} \) as \( \Theta_{ + }^{Mst} (k) \), and can get \( 1 - t = (5\theta^{Mst} - 1)/(1 + 3\theta^{Mst} ),\quad u_{m} = \theta^{Mst} M_{c} ,\quad\sqrt A = k_{m} \theta^{Mst} (1 - \theta^{Mst} )M_{c}^{2} /4 \).

The Hesse matrix of \( \prod\nolimits_{m}^{Mst} \) is

$$ \begin{aligned} H_{3} = \hfill \\ \left( {\begin{array}{*{20}c} { - (M_{c} - u_{m} )k_{r}^{2} \frac{{3(1 - t)(M_{c} - u_{m} ) + 2t(M_{c} + 2u_{m} )}}{{16t^{2} }} - \sqrt A k_{m} } & {\frac{{(M_{c} - 2u_{m} )k_{m} }}{4\sqrt A }} & { - (M_{c} - u_{m} )^{2} k_{r}^{2} \frac{{(1 - t)(M_{c} - u_{m} ) + t(2M_{c} - 5u_{m} )}}{{16t^{3} }}} \\ {\frac{{(M_{c} - 2u_{m} )k_{m} }}{4\sqrt A }} & { - \frac{{(M_{c} - u_{m} )u_{m} k_{m} }}{{8A^{3/2} }}} & 0 \\ { - k_{r}^{2} (M_{c} - u_{m} )^{2} \frac{{2(1 - t)(M_{c} - u_{m} ) + t(2M_{c} - 5u_{m} )}}{{16t^{3} }}} & 0 & { - (M_{c} - u_{m} )^{3} k_{r}^{2} \frac{{3(1 - t)(M_{c} - u_{m} ) + 2t(M_{c} - 3u_{m} )}}{{32t^{4} }}} \\ \end{array} } \right) \hfill \\ \end{aligned} $$

When \( 1 - t = (5\theta - 1)/(1 + 3\theta ),u_{m} = \theta M_{c} ,\sqrt A = k_{m} \theta (1 - \theta )M_{c}^{2} /4 \),we have

$$ \begin{aligned} & \left| {H_{1} } \right| = \frac{{\partial^{2} \prod\nolimits_{m} }}{{\partial u_{m}^{2} }} = \frac{{ - 64\sqrt A k_{m} - 9M_{m}^{2} (1 + 2\theta - 3\theta^{2} )k_{r}^{2} }}{64} \\ & \left| {H_{2} } \right| = \frac{{\partial^{2} \prod\nolimits_{m} }}{{\partial u_{m}^{2} }}\frac{{\partial^{2} \prod\nolimits_{m} }}{{\partial A_{{}}^{2} }} - \left( {\frac{{\partial^{2} \prod\nolimits_{m} }}{\partial u\partial A}} \right)^{2} = \frac{{ - 8(1 - 6\theta + 6\theta^{2} )k + 9(1 + 3\theta )(1 - \theta )}}{{8M^{2} (1 - \theta )^{2} \theta^{2} k}} \\ & \left| {H_{3} } \right| = - \frac{{(1 + 3\theta )^{4} k_{r}^{4} M^{4} k_{m} [8( - 1 + 7\theta - 12\theta^{2} + 6\theta^{3} )k + (1 + 18\theta - 27\theta^{2} )(1 - \theta )]}}{{4096(1 - \theta )^{3} \theta k}}. \\ \end{aligned} $$

In the interval \( 1/3 \le \theta \le 1/2 \), it is easy to derive that \( 1 + 2\theta - 3\theta^{2} > 0,1 - 6\theta + 6\theta^{2} < 0,1 + 18\theta - 27\theta^{2} > 0 \), and \( - 1 + 7\theta - 12\theta^{2} + 6\theta^{3} > 0 \),

Therefore, \( \left| {H_{1} } \right| < 0,\left| {H_{2} } \right| > 0,\left| {H_{3} } \right| < 0 \).

Since \( \frac{{\partial t^{Mst} }}{{\partial \theta^{Mst} }} = - 8/(1 + 3\theta^{Mst} )^{2} < 0 \) and \( 1/3 \le \theta^{Mst} \le 1/2 \), we can get \( 2/5 < t^{Mst} < 2/3 \).

Proof of Proposition 2.6

For \( 1/3 < \theta^{Mst} < 1/2 \), because \( \partial \theta^{Mst} /\partial k = \frac{20}{{\sqrt {16k^{2} + 16k + 9} \cdot (18 - 4k + 9\sqrt {16k^{2} + 16k + 9} )}} \), we have \( \partial \theta^{{Ms{\text{t}}}} /\partial k > 0 \). Based on this property, it is easy to prove that:\( \partial u_{m}^{Mst} /\partial k > 0,\partial u_{r}^{Mst} /\partial k < 0 \), \( \partial A^{Mst} /\partial k > 0,\partial a^{Mst} /\partial k < 0, \)\( \partial (1 - t^{Mst} )/\partial k < 0 \).

Through a complex algebraic operation, we have

$$ \partial \psi^{Mst} /\partial k = \frac{\begin{array}{ll} &2[ - 24300 - 223128k - 550848k^{2} - 651392k^{3} - 81920k^{5} - 12(243 + 7000k^{2} \hfill \\ &\quad+ 846k + 13376k^{3} + 7168k^{4} )\sqrt {9 + 16k + 16k^{2} } ] \hfill \\ \end{array} }{{[(\sqrt {9 + 16k + 16k^{2} } + 9 + 12k)(1 + k)(9 + 16k)^{4} \sqrt {9 + 16k + 16k^{2} } ]}} < 0. $$

Proof of Proposition 2.7

According to the retailer’s profit, it is easy to get

$$ \begin{aligned} &\frac{{\partial \prod\nolimits_{r}^{Rs} }}{{\partial a^{Rs} }} = k_{r} \frac{{u_{r}^{Rs} (M_{c} - u_{r}^{Rs} )}}{{4\beta \sqrt {a^{Rs} } }} - 1 \hfill \\ &\frac{{\partial \prod\nolimits_{r}^{Rs} }}{{\partial u_{r}^{Rs} }} = \frac{{(M_{c} - 2u_{r}^{Rs} )}}{2\beta }[k_{r} \sqrt {a^{Rs} } + k_{m}^{2} \frac{{(M_{c} - u_{r}^{Rs} )^{2} }}{8\beta } - \frac{{u_{r}^{Rs} }}{2\beta }[k_{m}^{2} \frac{{(M_{c} - u_{r}^{Rs} )^{2} }}{4\beta }]. \hfill \\ \end{aligned} $$

Set \( \partial \prod\nolimits_{r}^{Rs} /\partial a^{Rs} = 0,\partial \prod\nolimits_{r}^{Rs} /\partial u_{r}^{Rs} = 0 \), we have

$$ 2u_{r}^{Rs} (M_{c} - 2u_{r}^{Rs} ) + k(M_{c} - 4u_{r}^{Rs} )(M_{c} - u_{r}^{Rs} ) = 0. $$
(A6)

So we can obtain \( u_{r}^{Rs} = \Theta_{ \pm }^{Rs} (k)M_{c} \), where \( \Theta_{ \pm }^{Rs} (k) = \frac{{(5k - 2) \pm \sqrt {9k^{2} - 4k + 4} }}{8(k - 1)} \).

If \( k > 1 \), \( \Theta_{ + }^{Rs} (k) > \frac{5k - 2 + 3k - 2}{8(k - 1)} > 1 \); if \( k < 1 \), \( \Theta_{ + }^{Rs} (k) = \frac{{(5k - 2) + \sqrt {(5k - 2)^{2} - 16(k - 1)k} }}{8(k - 1)} < 0 \), thus \( u_{r}^{Rs} = \Theta_{ + }^{Rs} (k)M_{c} \) isn’t feasible solution.

Because

$$ \begin{aligned} \Theta_{ - }^{Rs} (k) - \frac{1}{2} = \frac{ - k}{{k + 2 + \sqrt {9k^{2} - 4k + 4} }},\quad\Theta_{ - }^{Rs} (k) - \frac{1}{4} = \frac{1}{{6k + 2\sqrt {9k^{2} - 4k + 4} }} \hfill \\ \end{aligned} $$

thus \( 1/4 \le \Theta_{ - }^{Rs} (k) \le 1/2 \).

The Hesse matrix of \( \prod\nolimits_{r}^{Rs} \) is

$$ H_{2} = \left( {\begin{array}{*{20}c} { - \frac{{3(M - u)(M - 2u)k_{m}^{2} }}{8} - \frac{{\sqrt a k_{r} }}{{}}} & {\frac{{(M - 2u)k_{r} }}{4\sqrt a }} \\ {\frac{{(M - 2u)k_{r} }}{4\sqrt a }} & { - \frac{{(M - u)uk_{r} }}{{8a^{3/2} }}} \\ \end{array} } \right). $$
$$ \left| {H_{1} } \right| = - \frac{{3(M - u)(M - 2u)k_{m}^{2} }}{8} - \sqrt a k_{r} ,\quad \left| {H_{2} } \right| = \frac{{k_{r}^{3} M^{4} (1 - \theta )\theta (3(1 - 2\theta )(1 - \theta )k - (1 - 6\theta + 6\theta^{2} ))}}{{64a^{3/2} }} $$

In the interval \( 1/4 \le \theta \le 1/2 \), it is easy to derive that \( 1 - 6\theta + 6\theta^{2} < 0 \) and \( \left| {H_{1} } \right| < 0,\left| {H_{2} } \right| > 0 \).

Therefore \( \Theta_{ - }^{Rs} (k) \) is optimal solution for \( \prod\nolimits_{r}^{Rs} \). We denote \( \theta^{Rs} \) as \( \Theta_{ - }^{Rs} (k) \). The equilibrium solution (Rs) can easily be derived based on \( u_{r}^{Rs} = \theta_{{}}^{Rs} (k)M_{c} \) .

Proof of Proposition 2.10

Because \( \partial \theta^{Rs} /\partial k = - \frac{{4( - 2 + k + \sqrt {4 - 4k + 9k^{2} } )}}{{\sqrt {4 - 4k + 9k^{2} } ( - 2 + 5k + \sqrt {4 - 4k + 9k^{2} } )^{2} }} \), we have \( \partial \theta^{Rs} /\partial k > 0 \) and \( 1/4 \le \theta^{Rs} \le 1/2 \).Based on this property, it is easy to prove that : \( \partial u_{r}^{Rs} /\partial k < 0,\partial u_{m}^{Rs} /\partial k > 0 \), \( \partial a^{Rs} /\partial k < 0,\partial A^{Rs} /\partial k > 0. \) We can get

$$ \partial \psi^{Rs} /\partial k = \frac{{32(3k - 2 + \sqrt {4 - 4k + 9k^{2} } )}}{{(1 + k)^{2} \sqrt {4 - 4k + 9k^{2} } (5k - 2 + \sqrt {4 - 4k + 9k^{2} } )^{5} }}h_{3} (k), $$

where \( h_{3} (k) = h_{31} (k) + h_{32} (k) \) and \( h_{31} (k) = (k - 1)\sqrt {4 - 4k + 9k^{2} } (4 + 18k - 12k^{2} + 27k^{3} ) \), \( h_{32} (k) = (8 + 24k - 66k^{2} + 140k^{3} - 139k^{4} + 81k^{5} ) \).

Since \( (3k - 2) + \sqrt {(3k - 2)^{2} + 8k} > 0 \), the sign of \( \partial \psi^{Rs} /\partial k \) is same as \( h_{3} (k) \). Because \( \partial h_{32} (k)/\partial k = 24 - 132k + 200k^{2} + k^{2} (220 - 556k + 405k^{2} ) \), so \( \partial h_{32} (k)/\partial k > 0 \). Therefore \( h_{32} (k) \ge h_{32} (0) > 0 \). Similarly, we have \( 18 - 12k + 27k^{2} \ge 0 \), that means \( \sqrt {4 - 4k + 9k^{2} } (4 + 18k - 12k^{2} + 27k^{3} ) \ge 0 \). If \( k \ge 1 \), \( h_{31} (k) \ge 0 \), so that \( h_{3} (k) \ge 0 \). If \( 0 \le k < 1 \), because \( [h_{32} (k)]^{2} - [h_{31} (k)]^{2} = - 8k^{4} ( - 4 - 48k - 113k^{2} + 95k^{3} - 299k^{4} + 81k^{5} ) \ge 0 \), so that \( h_{3} (k) \ge 0 \).With the above results, \( \partial \psi^{Rs} /\partial k \ge 0 \).

Proof of Proposition 2.11

Since \( \prod\nolimits_{m}^{Rst} = u_{m}^{Rst} D^{Rst} /\beta - t^{Rst} A^{Rst} ,\prod\nolimits_{r}^{Rst} = u_{r}^{Rst} D^{Rst} /\beta - (1 - t^{Rst} )A^{Rst} - a^{Rst} \),

$$ \begin{aligned} & \partial \prod\nolimits_{m}^{Rst} /\partial u_{m}^{Rst} = (M_{c} - u_{r}^{Rst} - 2u_{m}^{Rst} )(k_{r} \sqrt {a^{Rst} } + k_{m} \sqrt {A^{Rst} } )/\beta \\ & \partial \prod\nolimits_{m}^{Rst} /\partial A^{Rst} = u_{m}^{Rst} (M_{c} - u_{s}^{Rst} )k_{m} /(2\beta \sqrt {A^{Rst} } ) - t^{Rst} , \\ \end{aligned} $$

The manufacture’s optimal profits are given by the following equations:

$$ u_{m}^{Rst} = \left( {M_{c} - u_{r}^{Rst} } \right)/2,\sqrt {A^{Rst} } = (M_{c} - u_{r}^{Rst} )^{2} k_{m} /(8\beta t^{Rst} ) $$
(A7)

So \( \prod\nolimits_{r}^{Rst} = k_{r} u_{r}^{Rst} \frac{{(M_{c} - u_{r}^{Rst} )}}{2\beta }\sqrt {a^{Rst} } - a^{Rst} + k_{m}^{2} \frac{{(M_{c} - u_{r}^{Rst} )^{3} (M_{c} + 3u_{r}^{Rst} )}}{{64\beta^{2} t^{Rst} }} - k_{m}^{2} \frac{{(M_{c} - u_{r}^{Rst} )^{4} }}{{64\beta^{2} t^{Rst} t^{Rst} }} \).

Solving equation \( \partial \prod\nolimits_{r}^{Rst} /\partial a^{Rst} = 0 \), \( \partial \prod\nolimits_{r}^{Rst} /\partial t^{Rst} = 0 \), we have \( \sqrt {a^{Rst} } = k_{r} u_{r}^{Rst} (M_{c} - u_{r}^{Rst} )/(4\beta ) \), \( t^{Rst} = 2(M_{c} - u_{r}^{Rst} )/(M_{c} + 3u_{r}^{Rst} ) \). Substitute it into \( \partial \prod\nolimits_{r}^{Rst} /\partial u_{r}^{Rst} = 0 \), we have that

$$ k(M_{c} + 3u_{r}^{Rst} )(M_{c} - 3u_{r}^{Rst} ) + 8u_{r}^{Rst} (M_{c} - 2u_{r}^{Rst} ) = 0 $$
(A8)

So we have \( u_{r}^{Rst} = \Theta_{ \pm }^{Rst} (k)M_{c} \), \( \Theta_{ \pm }^{Rst} (k) = \frac{{4 \pm \sqrt {16 + k(9k + 16)} }}{(9k + 16)} \). Since \( u_{r}^{Rst} > 0 \), \( u_{r}^{Rs} = \Theta_{ - }^{Rst} (k)M_{c} \) isn’t feasible solution.

Since

$$ \begin{aligned} \Theta_{ + }^{Rst} (k) - \frac{1}{3} &= \frac{{ - \sqrt {81k^{2} + 72k + 16} + \sqrt {81k^{2} + 144k + 144} }}{3(9k + 16)} \\ \Theta_{ + }^{Rst} (k) - \frac{1}{2} &= \frac{{ - \sqrt {81k^{2} + 144k + 64} + \sqrt {36k^{2} + 64k + 64} }}{2(9k + 16)} \\ \end{aligned} $$

so \( u_{r}^{Rst} = \Theta_{ + }^{Rst} (k)M_{c} \) is optimal solution and \( 1/3 \le \Theta_{ - }^{Rst} (k) \le 1/2 \). We denote \( \theta^{Rst} \) as \( \Theta_{ - }^{Rst} (k) \).

The Hesse matrix of \( \prod\nolimits_{m}^{Rst} \) is

$$ H_{3} = \left( {\begin{array}{*{20}c} { - \frac{{(M_{c} - u_{r} )u_{r} k_{r} }}{{8a^{3/2} }}} & {\frac{{(M_{c} - 2u_{m} )k_{r} }}{4\sqrt a }} & 0 \\ {\frac{{(M_{c} - 2u_{r} )k_{r} }}{4\sqrt a }} & { - \frac{{3(M_{c} - u_{r} )(M_{c} + M_{c} t - u_{r} - 3tu_{r} )k_{m}^{2} + 16\sqrt a t^{2} \beta k_{r} }}{{16t^{2} }}} & {\frac{{(M_{c} - u_{r} )^{2} [ - 2M_{c} + (2 + 3t)u_{r} ]k_{m}^{2} }}{{16t^{3} }}} \\ 0 & {\frac{{(M_{c} - u_{r} )^{2} [ - 2M + (2 + 3t)u_{r} ]k_{m}^{2} }}{{16t^{3} }}} & {\frac{{(M_{c} - u_{r} )^{3} [M_{c} ( - 3 + t) + 3(1 + t)u_{r} ]k_{m}^{2} }}{{32t^{4} }}} \\ \end{array} } \right) $$

and

$$ \left| {H_{1} } \right| = - u_{r} k_{r} \frac{{M_{c} - u_{r} }}{{8a^{3/2} }},\quad \left| {H_{2} } \right| = M_{c}^{2} k_{r} \frac{{9M_{c}^{2} ( - 1 + \theta )^{2} \theta (1 + 3\theta )k_{m}^{2} - 32\sqrt a \beta (1 - 6\theta + 6\theta^{2} )k_{r} }}{{512a^{3/2} }}, $$
$$ \left| {H_{3} } \right| = M_{c}^{8} (1 - \theta )\theta (1 + 3\theta )^{4} k_{m}^{2} k_{r} \frac{{( - 1 - 18\theta + 27\theta^{2} )k_{m}^{2} + 8(1 - 6\theta + 6\theta^{2} )k_{r}^{2} }}{{262144a^{3/2} }}. $$

Because in the interval \( 1/3 \le \theta \le 1/2 \), then \( 1 - 6\theta + 6\theta^{2} < 0, - 1 - 18\theta + 27\theta^{2} < 0 \).It is easy to prove that \( \left| {H_{1} } \right| < 0,\left| {H_{2} } \right| > 0,\left| {H_{3} } \right| < 0 \). Therefore, \( u_{r} = \theta^{Rst} M_{c} ,\sqrt a = k_{r} M_{c}^{2} \frac{\theta (1 - \theta )}{4},t = 2\frac{1 - \theta }{1 + 3\theta } \) is optimal decision for the retailer.

Since \( \frac{{\partial t^{Rst} }}{{\partial \theta^{Rst} }} = - 8/(1 + 3\theta^{Rst} )^{2} < 0 \) and \( 1/3 \le \theta^{Rst} \le 1/2 \), we can get \( 2/5 < t^{Rst} < 2/3 \).

Proof of Proposition 2.12

Because \( \frac{{\partial \theta^{Rst} }}{\partial k} = \frac{{144k - 72\sqrt {16 + k(9k + 16)} - 32}}{{2(9k + 16)^{2} \sqrt {16 + k(9k + 16)} }} \), we have \( \partial \theta^{Rst} /\partial k < 0 \) and \( 1/3 \le \theta^{Rst} \le 1/2 \).Based on this property, it is easy to prove that \( \partial u_{r}^{Rst} /\partial k < 0,\partial u_{m}^{Rst} /\partial k > 0,\quad \partial a^{Rst} /\partial k < 0,\partial A^{Rst} /\partial k > 0,\quad \partial (1 - t^{Rst} )/\partial k < 0. \)

Through a complex algebraic operation, we have

$$ \partial \psi^{Rst} (k)/\partial k = \frac{\begin{array}{ll} &(12 + 9k - \sqrt {16 + 16k + 9k^{2} } )(81920 + 388096k + 651392k^{2} + 550848k^{3} + 223128k^{4} + 24300k^{5} \\ & \quad + 12\sqrt {16 + 16k + 9k^{2} } (7168 + 13376k + 7000k^{2} + 846k^{3} + 243k^{4} )) \hfill \\ \end{array} }{{4(1 + k)^{2} (16 + 9k)^{5} \sqrt {16 + 16k + 9k^{2} } }} > 0. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Guo, X., Hu, J. et al. Cooperative advertising models under different channel power structure. Ann Oper Res 291, 1103–1125 (2020). https://doi.org/10.1007/s10479-019-03257-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03257-4

Keywords

Navigation