Skip to main content
Log in

Abstract

We consider a doubly nonlinear evolution equation with multiplicative noise and show existence and pathwise uniqueness of a strong solution. Using a semi-implicit time discretization we get approximate solutions with monotonicity arguments. We establish a-priori estimates for the approximate solutions and show tightness of the sequence of image measures induced by the sequence of approximate solutions. As a consequence of the theorems of Prokhorov and Skorokhod we get a.s. convergence of a subsequence on a new probability space which allows to show the existence of martingale solutions. Pathwise uniqueness is obtained by an \(L^1\)-method. Using this result, we are able to show existence and uniqueness of strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces, vol. 65. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Banas, L., Brzezniak, Z., Neklyudov, M., Prohl, A.: A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA J. Numer. Anal. 34(2), 502–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Breit, D., Feireisl, E., Hofmanova, M.: Stochastically Forced Compressible Fluid Flows. De Gruyter Series in Applied and Numerical Mathematics. De Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and Its Applications, 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  6. Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic partial differential equations: quasilinear case. Ann. Probab. 44(3), 1916–1955 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaz, J.I., de Thélin, F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edwards, R.E.: Functional Analysis. Dover Publications Inc, New York (1995)

    Google Scholar 

  9. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garsia, A., Rodemich, H., Rumsey, H.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578 (1970/71)

  11. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996)

    Article  MATH  Google Scholar 

  12. Hofnanová, M.: Degenerate parabolic stochastic partial differential equations. Stoch. Process. Appl. 123(12), 4294–4336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Stochastic Differential Equations: Theory and Applications, vol. 2 of Interdiscip. Math. Sci., pp. 1–69, World Sci. Publ., Hackensack (2007)

  14. Lions, J.-L.: Quelques méthodes de résolution desproblèmes aux limites non linéaires. Dunod. Paris (1969)

  15. Mielke, A., Rossi, R., Savaré, G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Equ. 46(1–2), 253–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pardoux, E.: Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.D. thesis, University of Paris Sud (1975)

  17. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  18. Ruzicka, M.: Nichtlineare Funktionalanalysis. Eine Einführung. Springer, Berlin (2004)

  19. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  20. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer, New York (1996)

    Book  MATH  Google Scholar 

  21. Visintin, A.: Two-scale model of phase transitions. Phys. D 106(1–2), 66–80 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Visintin, A.: Introduction to Stefan-Type Problems. Handbook of Differential Equations: Evolutionary Equations. Vol. IV, 377–484, Handb. Differ. Equ., Elsevier/North-Holland (2008)

  23. Visintin, A.: Electromagnetic processes in doubly-nonlinear composites. Commun. Partial Differ. Equ. 33(4–6), 808–841 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11(1), 155–167 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

  26. Zimmermann, A.: On a pseudomonotone evolution equation with multiplicative noise. In: Zimmermann, A., On nonlinear evolution problems with stochastic forcing, pp. 78–136. Habilitation thesis, University of Duisburg-Essen (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Zimmermann.

Appendix

Appendix

Theorem 7.1

Let \(a: D \times \mathbb {R}^d \rightarrow \mathbb {R}^d\) and \(b: \mathbb {R} \rightarrow \mathbb {R}\) as in Sect. 2. Then the operator \(A: W_0^{1,p}(D) \rightarrow W^{-1,p'}(D)\), \(Au = -div ~ a( \cdot , \nabla (b^{-1}(u)))\) is pseudomonotone.

Proof

Let \(u_n \rightharpoonup u \) in \(W_0^{1,p}(D)\) and \(\limsup \limits _{n \rightarrow \infty } \langle Au_n,u_n - u\rangle \le 0\).

Then we have

$$\begin{aligned}&\langle Au_n,u_n - u\rangle = \int _D a(x, \nabla (b^{-1}(u_n))) \cdot \nabla (u_n - u)~dx \\&\quad =\int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla u_n) - a(x, (b^{-1})'(u_n)\nabla u) \bigg ) \cdot \nabla (u_n - u)~dx \\&\qquad + \int _D a(x, (b^{-1})'(u_n) \nabla u) \cdot \nabla (u_n - u)~dx \\&\quad =\int _D \frac{1}{(b^{-1})'(u_n)}\bigg ( a(x, (b^{-1})'(u_n) \nabla u_n) - a(x, (b^{-1})'(u_n)\nabla u) \bigg ) \cdot \\&\qquad \cdot ((b^{-1})'(u_n)\nabla u_n - (b^{-1})'(u_n) \nabla u) + \int _D a(x, (b^{-1})'(u_n) \nabla u) \cdot \nabla (u_n - u)~dx \\&\quad \ge \int _D a(x, (b^{-1})'(u_n) \nabla u) \cdot \nabla (u_n - u)~dx \rightarrow 0. \end{aligned}$$

Here we used that \((b^{-1})'>0\), a is monotone and \((b^{-1})'(u_n) \rightarrow (b^{-1})'(u)\) in \(L^p(D)\).

Therefore we obtain \(\liminf \limits _{n \rightarrow \infty } \langle Au_n, u_n - u \rangle \ge 0\).

By using the assumption we may conclude \(\lim \limits _{n \rightarrow \infty } \langle Au_n, u_n - u \rangle =0\).

Now let \(w \in W_0^{1,p}(D)\) and set \(z=u + t(w-u)\), \(t>0\). It follows that \(z \rightarrow u\) in \(W_0^{1,p}(D)\) for \(t \rightarrow 0^+\). We obtain:

$$\begin{aligned}&\langle Au_n - Az, u_n-z \rangle \\&\quad = \int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla u_n) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u_n - z) ~dx\\&\quad = \int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla u_n) - a(x, (b^{-1})'(u_n)\nabla z) \bigg ) \cdot \nabla (u_n - z) ~dx\\&\qquad + \int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u_n - z)~dx\\&\quad \ge \int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u_n - z)~dx. \end{aligned}$$

Therefore it follows

$$\begin{aligned} t \langle Au_n, u-w \rangle&\ge - \langle Au_n, u_n - u\rangle + t \langle Az, u-w \rangle + \langle Az, u_n - u \rangle \\&\quad + \int _D \bigg ( a(x, (b^{-1})'(u_n) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u_n - z)~dx. \end{aligned}$$

Now we take the limit inferior on both sides of the inequality. Since a is monotone we may conclude

$$\begin{aligned}&t \liminf \limits _{n \rightarrow \infty } \langle Au_n, u_n - w \rangle \\&\quad \ge t \langle Az, u-w \rangle + \int _D \bigg ( a(x, (b^{-1})'(u) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u - z)~dx \\&\quad = t \langle Az, u-w \rangle + t \int _D \bigg ( a(x, (b^{-1})'(u) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u - w) ~dx \end{aligned}$$

We divide by t and get

$$\begin{aligned}&\liminf \limits _{n \rightarrow \infty } \langle Au_n, u_n - w \rangle \\&\quad \ge \langle Az, u-w \rangle + \int _D \bigg ( a(x, (b^{-1})'(u) \nabla z) - a(x, (b^{-1})'(z)\nabla z) \bigg ) \cdot \nabla (u - w)~dx \end{aligned}$$

By passing to the limit \(t \rightarrow 0^+\) we get:

$$\begin{aligned}&\liminf \limits _{n \rightarrow \infty } \langle Au_n, u_n - w \rangle \\&\quad \ge \langle Au, u-w \rangle + \int _D \bigg ( a(x, (b^{-1})'(u) \nabla u) - a(x, (b^{-1})'(u)\nabla u) \bigg ) \cdot \nabla (u - w) ~dx\\&\quad = \langle Au, u-w\rangle . \end{aligned}$$

Hence, A is pseudomonotone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapountzoglou, N., Wittbold, P. & Zimmermann, A. On a doubly nonlinear PDE with stochastic perturbation. Stoch PDE: Anal Comp 7, 297–330 (2019). https://doi.org/10.1007/s40072-018-0128-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0128-7

Keywords

Mathematics Subject Classification

Navigation