Skip to main content
Log in

On the phase field modeling of crack growth and analytical treatment on the parameters

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A thermodynamically consistent phase field model for crack propagation is analyzed. The thermodynamic driving force for the crack propagation is derived based on the laws of thermodynamics. The Helmholtz free energy satisfies the thermodynamic equilibrium and instability conditions for the crack propagation. Analytical solutions for the Ginzburg–Landau equation including the surface profile and the estimation of the kinetic coefficient are found. It is shown how kinetic coefficient affects the local stress field. The local critical stress for the crack propagation is calibrated with the theoretical strength which gives the value of the crack surface width. The finite element method is utilized to solve the complete system of crack phase field and mechanics equations. The analytical expressions for the crack surface profile and the crack tip velocity are verified with the numerical solutions. It is shown that under mode I cracking and proper calibration of parameters, phase field models always agree with Griffith’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aranson, I.S., Kalatsky, V.A., Vinokur, V.M.: Continuum field description of crack propagation. Phys. Rev. Lett. 85(1), 118–121 (2000)

    Article  ADS  Google Scholar 

  2. Karma, A., Kessler, D.A., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001)

    Article  ADS  Google Scholar 

  3. Henry, H., Levine, H.: Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys. Rev. Lett. 93(10), 105504 (2004)

    Article  ADS  Google Scholar 

  4. Hakim, V., Karma, A.: Laws of crack motion and phase-field models of fracture. J. Mech. Phys. Solids 57(2), 342–368 (2009). https://doi.org/10.1016/j.jmps.2008.10.012

    Article  ADS  MATH  Google Scholar 

  5. Eastgate, L., Sethna, J.P., Rauscher, M., Cretegny, T., Chen, C.-S., Myers, C.: Fracture in mode I using a conserved phase-field model. Phys. Rev. E 65(3), 036117 (2002)

    Article  ADS  Google Scholar 

  6. Wang, Y.U., Jin, Y.M., Khachaturyan, A.G.: Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress. J. Appl. Phys. 91(10), 6435–6451 (2002)

    Article  ADS  Google Scholar 

  7. Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014). https://doi.org/10.1016/j.cma.2014.01.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010). https://doi.org/10.1016/j.cma.2010.04.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015). https://doi.org/10.1007/s00466-015-1151-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)

    Article  Google Scholar 

  11. Wang, J., Zhang, T.-Y.: Phase field simulations of a permeable crack parallel to the original polarization direction in a ferroelectric mono-domain. Eng. Fract. Mech. 75(17), 4886–4897 (2008)

    Article  Google Scholar 

  12. Nguyen, T., Yvonnet, J., Zhu, Q.-Z., Bornert, M., Chateau, C.: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015)

    Article  Google Scholar 

  13. Kuhn, C., Müller, R.: A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010)

    Article  Google Scholar 

  14. Hou, Y., Wang, L., Yue, P., Pauli, T., Sun, W.: Modeling mode I cracking failure in asphalt binder by using nonconserved phase-field model. J. Mater. Civ. Eng. 26(4), 684–691 (2013)

    Article  Google Scholar 

  15. Levitas, V.I., Idesman, A.V., Palakala, A.K.: Phase-field modeling of fracture in liquid. J. Appl. Phys. 110(3), 033531 (2011)

    Article  ADS  Google Scholar 

  16. Marconi, V.I., Jagla, E.A.: Diffuse interface approach to brittle fracture. Phys. Rev. E 71(3), 036110 (2005)

    Article  ADS  Google Scholar 

  17. Voyiadjis, G.Z., Mozaffari, N.: Nonlocal damage model using the phase field method: theory and applications. Int. J. Solids Struct. 50(20), 3136–3151 (2013)

    Article  Google Scholar 

  18. Duda, F.P., Ciarbonetti, A., Sánchez, P.J., Huespe, A.E.: A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int. J. Plast 65, 269–296 (2015)

    Article  Google Scholar 

  19. Levitas, V.I.: Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Mater. 61(12), 4305–4319 (2013). https://doi.org/10.1016/j.actamat.2013.03.034

    Article  Google Scholar 

  20. Levitas, V.I., Lee, D.-W., Preston, D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast. 26(3), 395–422 (2010). https://doi.org/10.1016/j.ijplas.2009.08.003

    Article  MATH  Google Scholar 

  21. Levitas, V.I., Javanbakht, M.: Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys. Rev. Lett. 105(16), 165701 (2010)

    Article  ADS  Google Scholar 

  22. Levitas, V.I., Javanbakht, M.: Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions. Phys. Rev. Lett. 107(17), 175701 (2011)

    Article  ADS  Google Scholar 

  23. Javanbakht, M., Levitas, V.I.: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J. Mech. Phys. Solids 82, 164–185 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Levitas, V.I., Javanbakht, M.: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J. Mech. Phys. Solids 82, 287–319 (2015). https://doi.org/10.1016/j.jmps.2015.05.005

    Article  ADS  MathSciNet  Google Scholar 

  25. Javanbakht, M., Levitas, V.I.: Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear. Phys. Rev. B 94(21), 214104 (2016)

    Article  ADS  Google Scholar 

  26. Javanbakht, M., Levitas, V.I.: Nanoscale mechanisms for high-pressure mechanochemistry: a phase field study. J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2175-x

    Article  Google Scholar 

  27. Javanbakht, M., Barati, E.: Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Comput. Mater. Sci. 115, 137–144 (2016). https://doi.org/10.1016/j.commatsci.2015.10.037

    Article  Google Scholar 

  28. Li, W., Landis, C.M.: Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng. Fract. Mech. 78(7), 1505–1513 (2011). https://doi.org/10.1016/j.engfracmech.2011.01.002

    Article  Google Scholar 

  29. Zhao, T., Zhu, J., Luo, J.: Study of crack propagation behavior in single crystalline tetragonal zirconia with the phase field method. Eng. Fract. Mech. (2016). https://doi.org/10.1016/j.engfracmech.2016.03.035

    Article  Google Scholar 

  30. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley, New York (2011)

    Google Scholar 

  31. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998). https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000). https://doi.org/10.1016/S0022-5096(99)00028-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  ADS  Google Scholar 

  34. Patil, S.P., Heider, Y., Hernandez Padilla, C.A., Cruz-Chú, E.R., Markert, B.: A comparative molecular dynamics-phase-field modeling approach to brittle fracture. Comput. Methods Appl. Mech. Eng. (2016). https://doi.org/10.1016/j.cma.2016.04.005

    Article  MathSciNet  MATH  Google Scholar 

  35. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6), 1119–1141 (2012). https://doi.org/10.1007/s00033-012-0197-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 94(10), 862–877 (2014). https://doi.org/10.1002/zamm.201300028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015). https://doi.org/10.1177/1081286513509811

    Article  MathSciNet  MATH  Google Scholar 

  38. dell’Isola, F., Seppecher, P., Corte, A.D.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150415 (2015). https://doi.org/10.1098/rspa.2015.0415

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech. Thermodyn. 27(4), 623–638 (2015). https://doi.org/10.1007/s00161-014-0338-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017). https://doi.org/10.1177/1081286515616034

    Article  MathSciNet  MATH  Google Scholar 

  41. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. (2018). https://doi.org/10.1098/rspa.2017.0878

    Article  ADS  MathSciNet  Google Scholar 

  42. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 56 (2018). https://doi.org/10.1007/s00033-018-0947-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  Google Scholar 

  44. Porter, D.A., Easterling, K.E., Sherif, M.: Phase Transformations in Metals and Alloys, (Revised Reprint). CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  45. Yue, P., Zhou, C., Feng, J.J.: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010). https://doi.org/10.1017/S0022112009992679

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Boullay, P., Schryvers, D., Ball, J.: Nano-structures at martensite macrotwin interfaces in Ni 65 Al 35. Acta Mater. 51(5), 1421–1436 (2003)

    Article  Google Scholar 

  47. Krausz, A.S.: Fracture Kinetics of Crack Growth, vol. 1. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Farrahi.

Additional information

Communicated by Francesco dell’Isola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrahi, G.H., Javanbakht, M. & Jafarzadeh, H. On the phase field modeling of crack growth and analytical treatment on the parameters. Continuum Mech. Thermodyn. 32, 589–606 (2020). https://doi.org/10.1007/s00161-018-0685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0685-z

Keywords

Navigation