Skip to main content
Log in

An ERP-based BCI with peripheral stimuli: validation with ALS patients

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Many studies reported that ERP-based BCIs can provide communication for some people with amyotrophic lateral sclerosis (ALS). ERP-based BCIs often present characters within a matrix that occupies the center of the visual field. However, several studies have identified some concerns with the matrix-based approach. This approach may lead to fatigue and errors resulting from flashing adjacent stimuli, and is impractical for users who might want to use the BCI in tandem with other software or feedback in the center of the monitor. In this paper, we introduce and validate an alternate ERP-based BCI display approach. By presenting stimuli near the periphery of the display, we reduce the adjacency problem and leave the center of the display available for feedback or other applications. Two ERP-based display approaches were tested on 18 ALS patients to: (1) compare performance between a conventional matrix speller paradigm (Matrix-P, mean visual angle 6°) and a new speller paradigm with peripherally distributed stimuli (Peripheral-P, mean visual angle 8.8°); and (2) assess performance while spelling 42 characters online continuously, without a break. In the Peripheral-P condition, 12 subjects attained higher than 80% feedback accuracy during online performance, and 7 of these subjects obtained higher than 90% accuracy. The experimental results showed that the Peripheral-P condition yielded performance comparable to the conventional Matrix-P condition (p > 0.05) in accuracy and information transfer rate. This paper introduces a new display approach that leaves the center of the monitor open for feedback and/or other display elements, such as movies, games, art, or displays from other AAC software or conventional software tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acqualagna L, Blankertz B (2013) Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP). Clin Neurophysiol 124:901–908

    Article  PubMed  Google Scholar 

  • Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol 119:399–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison BZ, Leeb R, Brunner C, Muller-Putz GR, Bauernfeind G, Kelly JW, Neuper C (2012) Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J Neural Eng 9:013001

    Article  CAS  PubMed  Google Scholar 

  • Bai LJ, Yu TY, Li YQ (2015) A brain computer interface-based explorer. J Neurosci Methods 244:2–7

    Article  PubMed  Google Scholar 

  • Birbaumer N et al (1999) A spelling device for the paralysed. Nature 398:297–298

    Article  CAS  PubMed  Google Scholar 

  • Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7:056013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipresso P et al (2012) The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav 2:479–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaghy C, Thurtell MJ, Pioro EP, Gibson JM, Leigh RJ (2011) Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases. J Neurol Neurosurg Psychiatry 82:110–116

    Article  PubMed  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  CAS  PubMed  Google Scholar 

  • Feng JK et al (2018) Towards correlation-based time window selection method for motor imagery BCIs. Neural Netw 102:87–95

    Article  PubMed  Google Scholar 

  • Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 167:115–125

    Article  PubMed  Google Scholar 

  • Holz EM, Botrel L, Kübler A (2015) Independent home use of Brain Painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. Brain Comput Interfaces 2:117–134

    Article  Google Scholar 

  • Hsu HT et al (2016) Evaluate the feasibility of using frontal SSVEP to implement an SSVEP-based BCI in young, elderly and ALS groups. IEEE Trans Neural Syst Rehabil Eng 24:603–615

    Article  PubMed  Google Scholar 

  • Huang MQ, Daly I, Jin J, Zhang Y, Wang XY, Cichocki A (2016) An exploration of spatial auditory BCI paradigms with different sounds: music notes versus beeps. Cogn Neurodyn 10:201–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang MQ, Jin J, Zhang Y, Hu DW, Wang XY (2018) Usage of drip drops as stimuli in an auditory P300 BCI paradigm. Cogn Neurodyn 12:85–94

    Article  PubMed  Google Scholar 

  • Jin J et al (2010) P300 Chinese input system based on Bayesian LDA. Biomed Tech 55:5–18

    Article  Google Scholar 

  • Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) An adaptive P300-based control system. J Neural Eng 8:036006

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin J, Allison BZ, Zhang Y, Wang XY, Cichocki A (2014a) An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions. Int J Neural Syst 24:1450027

    Article  PubMed  Google Scholar 

  • Jin J, Daly I, Zhang Y, Wang XY, Cichocki A (2014b) An optimized ERP brain-computer interface based on facial expression changes. J Neural Eng 11:036004

    Article  PubMed  Google Scholar 

  • Jin J, Sellers EW, Zhou S, Zhang Y, Wang X, Cichocki A (2015) A P300 brain-computer interface based on a modification of the mismatch negativity paradigm. Int J Neural Syst 25:1550011

    Article  PubMed  Google Scholar 

  • Jin J, Zhang HH, Daly I, Wang XY, Cichocki A (2017) An improved P300 pattern in BCI to catch user’s attention. J Neural Eng 14:036001

    Article  PubMed  Google Scholar 

  • Kaufmann T, Holz EM, Kubler A (2013a) Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci 7:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann T, Schulz SM, Koblitz A, Renner G, Wessig C, Kubler A (2013b) Face stimuli effectively prevent brain-computer interface inefficiency in patients with neurodegenerative disease. Clin Neurophysiol 124:893–900

    Article  PubMed  Google Scholar 

  • Kaufmann T, Herweg A, Kubler A (2014) Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. J Neuroeng Rehabil 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller J et al (2015) Eye-tracking controlled cognitive function tests in patients with amyotrophic lateral sclerosis: a controlled proof-of-principle study. J Neurol 262:1918–1926

    Article  CAS  PubMed  Google Scholar 

  • Kubler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N (2001) Brain-computer communication: unlocking the locked in. Psychol Bull 127:358–375

    Article  CAS  PubMed  Google Scholar 

  • Kubler A et al (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64:1775–1777

    Article  CAS  PubMed  Google Scholar 

  • Kuebler A, Kotchoubey B, Salzmann HP, Ghanayim N, Perelmouter J, Homberg V, Birbaumer N (1998) Self-regulation of slow cortical potentials in completely paralyzed human patients. Neurosci Lett 252:171–174

    Article  CAS  PubMed  Google Scholar 

  • Leeb R, Sagha H, Chavarriaga R, Millan Jdel R (2011) A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng 8:025011

    Article  PubMed  Google Scholar 

  • Lewis M, Rushanan S (2007) The role of physical therapy and occupational therapy in the treatment of amyotrophic lateral sclerosis. Neurorehabilitation 22:451–461

    Article  PubMed  Google Scholar 

  • Li Y, Pan J, Long J, Yu T, Wang F, Yu Z, Wu W (2016) Multimodal BCIs: target detection, multidimensional control, and awareness evaluation in patients with disorder of consciousness. Proc IEEE 104:332–352

    Article  Google Scholar 

  • Mainsah BO, Collins LM, Colwell KA, Sellers EW, Ryan DB, Caves K, Throckmorton CS (2015) Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study. J Neural Eng 12:016013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak JN et al (2012) EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng 9:026014

    Article  PubMed  Google Scholar 

  • Marchetti M, Priftis K (2015) Brain-computer interfaces in amyotrophic lateral sclerosis: a metanalysis. Clin Neurophysiol 126:1255–1263

    Article  PubMed  Google Scholar 

  • Martinez-Cagigal V, Gomez-Pilar J, Alvarez D, Hornero R (2017) An asynchronous P300-based brain-computer interface web browser for severely disabled people. IEEE Trans Neural Syst Rehab Eng 25:1332–1342

    Article  Google Scholar 

  • McCane LM et al (2014) Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener 15:207–215

    Article  Google Scholar 

  • McCane LM et al (2015) P300-based brain-computer interface (BCI) event-related potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol 126:2124–2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Millan JDR et al (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161

    PubMed  PubMed Central  Google Scholar 

  • Piccione F et al (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117:531–537

    Article  CAS  PubMed  Google Scholar 

  • Puanhvuan D, Khemmachotikun S, Wechakarn P, Wijarn B, Wongsawat Y (2017) Navigation-synchronized multimodal control wheelchair from brain to alternative assistive technologies for persons with severe disabilities. Cogn Neurodyn 11:117–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Riccio A et al (2013) Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front Hum Neurosci 7:732

    Article  PubMed  PubMed Central  Google Scholar 

  • Roche JC et al (2012) A proposed staging system for amyotrophic lateral sclerosis. Brain 135:847–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Ron-Angevin R, Varona-Moya S, da Silva-Sauer L (2015) Initial test of a T9-like P300-based speller by an ALS patient. J Neural Eng 12:046023

    Article  CAS  PubMed  Google Scholar 

  • Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548

    Article  PubMed  Google Scholar 

  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotrophic Lateral Scler 11:449–455

    Article  Google Scholar 

  • Severens M, Van der Waal M, Farquhar J, Desain P (2014) Comparing tactile and visual gaze-independent brain-computer interfaces in patients with amyotrophic lateral sclerosis and healthy users. Clin Neurophysiol 125:2297–2304

    Article  CAS  PubMed  Google Scholar 

  • Wang HT, Li YQ, Long JY, Yu TY, Gu ZH (2014) An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface. Cogn Neurodyn 8:399–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw JR et al (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173

    Article  CAS  PubMed  Google Scholar 

  • Xu MP et al (2016) Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin. NeuroImage 134:204–212

    Article  PubMed  Google Scholar 

  • Xu MP, Xiao XL, Wang YJ, Qi HZ, Jung TP, Ming D (2018) A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng 65:1166–1175

    Article  PubMed  Google Scholar 

  • Yadav AP, Nicolelis MAL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord 32:820–832

    Article  PubMed  Google Scholar 

  • Yin EW, Zhou ZT, Jiang J, Yu Y, Hu DW (2015) A dynamically optimized SSVEP brain-computer interface (BCI) speller. IEEE Trans Biomed Eng 62:1447–1456

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhou GX, Jin J, Wang XY, Cichocki A (2014) Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst 24:1450013

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhou GX, Jin J, Wang XY, Cichocki A (2015) Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J Neurosci Methods 255:85–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Guo DQ, Xu P, Zhang Y, Yao DZ (2016) Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn Neurodyn 10:505–511

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National key research and development program 2017YFB13003002. This work was also supported in part by the Grant National Natural Science Foundation of China, under Grant Nos. 61573142, 61773164 and 91420302, and the programme of Introducing Talents of Discipline to Universities (the 111 Project) under Grant B17017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Chen or Jing Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Yin, E., Allison, B.Z. et al. An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cogn Neurodyn 14, 21–33 (2020). https://doi.org/10.1007/s11571-019-09541-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09541-0

Keywords

Navigation