Skip to main content

Advertisement

Log in

Generalising about generalists? A perspective on the role of pattern and process in investigating herbivorous insects that use multiple host species

  • Forum paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Generalist insect herbivores, those recorded as using numerous hosts (tens or even hundreds of species), are not well understood ecologically. We suggest ways to investigate the ecology of these species beyond the practice of accumulating host records. We present reasons why multiple host use by herbivorous insects needs to be quantified in the field, both locally and geographically, and also through time. Further, the host use patterns generated must be based on certain knowledge that cryptic species are not conflated in the results as one species. Such results reveal a lot about the ecology of the species concerned and about generalist–host relationships more widely. This provides a sound basis for the functional significance of multiple host use to be interpreted and tested further. Structured sampling programs conducted previously in the field indicate that generalist insect herbivores are strongly associated with only a relatively small subset of their recorded host species, their primary host plants. A focus on these particular host plants is fundamental to (i) understanding the ecology of the herbivore species in question and (ii) investigating the sensory and behavioural mechanisms associated with host location. We conclude that the principal influence on patterns of multiple host use in the field is the mechanism by which herbivorous insects recognise cues from potential hosts and use them to localise plants. These mechanisms represent species-specific and species-wide adaptations to the usual environment of the species in question. Working from this perspective should contribute substantially to developing a strong and realistic interpretation of the origins and functional significance of multiple host use in herbivorous arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson MN, Löfstedt C, Newcomb RD (2015) Insect olfaction and the evolution of receptor tuning. Front Ecol Evol. https://doi.org/10.3389/fevo.2015.00053

    Article  Google Scholar 

  • Anonymous (2003) Pest survey report for South African citrus thrips in Queensland. Queensland Government Department of Primary Industries, Brisbane

    Google Scholar 

  • Audusseau H, Celorio-Mancera MD, Janz N, Nylin S (2016) Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host. BMC Evol Biol 16:144

    PubMed  PubMed Central  Google Scholar 

  • Awuni GA, Gore J, Cook D, Musser F, Bond J (2015) Seasonal Abundance and phenology of Oebalus pugnax (Hemiptera: Pentatomidae) on graminaceous hosts in the delta region of Mississippi. Environ Entomol 44:931–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala FJ (1982) Population and evolutionary genetics: a primer. The Benjamin/Cummings Publishing Company Inc., Menlo Park

    Google Scholar 

  • Baker TC (2009) Representations of odor plume flux are accentuated deep within the moth brain. J Biol 8:16

    PubMed  PubMed Central  Google Scholar 

  • Beard JJ, Walter GH (2001) Host plant specificity in several species of generalist mite predators. Ecol Ento 26:562–570

    Google Scholar 

  • Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus-transmission and biological characterisation of Bemesia tabaci (Grandius) biotypes from different geographic regions. Ann Appl Biol 125:311–325

    Google Scholar 

  • Bergmann KO (2000) Oviposition, host plant choice and survival of a grass feeding butterfly, the Woodland Brown (Lopinga achine) (Nymphalidae: Satyrinae). J Res Lepid 35:9–21

    Google Scholar 

  • Bergmann EJ, Venugopal PD, Martinson HM, Raupp MJ, Shewsbury PM (2016) Host plant use by the invasive Halyomorpha halys (Stal) on woody ornamental trees and shrubs. PLoS ONE. https://doi.org/10.1371/journal.pone.0149975

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernays EA, Chapman RE (1994) Patterns of host-plant use. In: Miller Thomas A, van Emden Helmut S (eds) Host-plant selection by phytophagous insects. Springer, Boston, pp 4–13. https://doi.org/10.1007/978-0-585-30455-7_2

    Chapter  Google Scholar 

  • Bickford D et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    PubMed  Google Scholar 

  • Bisch-Knaden S, Dahake A, Sachse S, Knaden M, Hansson BS (2018) Spatial representation of feeding and oviposition odors in the brain of a hawkmoth. Cell Rep 22:2482–2492

    CAS  PubMed  Google Scholar 

  • Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). J Chem Ecol 21:1649–1664

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects: finding the right mix. Phytochemistry 72:1605–1611

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    CAS  PubMed  Google Scholar 

  • Cappadonna JK, Hereward JH, Walter GH (2019) Inferring invasion paths into cotton by Creontiades dilutes (Hemiptera: Miridae) from arid zone and agricultural sources. Environ Entomol 48:1489–1498

    CAS  PubMed  Google Scholar 

  • Carde RT, Roelofs WL, Harrison RG, Vawter AT, Brussard PF, Mutuura A, Munroe E (1978) European corn borer: pheromone polymorphism or sibling species? Science 199:555–556

    CAS  PubMed  Google Scholar 

  • Carlsson MA, Bisch-Knaden S, Schapers A, Mozuraitis R, Hansson BS, Janz N (2011) Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences. Plos ONE. https://doi.org/10.1371/journal.pone.0024025

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapleau F, Johansen PH, Williamson M (1988) The distinction between pattern and process in evolutionary biology: the use and abuse of the term ‘strategy’. Oikos 53:136–138

    Google Scholar 

  • Clarke AR (2017) Why so many polyphagous fruit flies (Diptera: Tephritidae)? A further contribution to the ‘generalism’ debate. Biol J Linn Soc 120:245–257

    Google Scholar 

  • Clarke AR, Allwood A, Chinajariyawong A, Drew RAI, Hengsawad C, Jirasurat M, Krong CK, Kritsaneepaiboon S, Vijaysegaran S (2001) Seasonal abundance and host use patterns of seven Bactrocera macquart species (Diptera: Tephritidae) in Thailand and peninsular Malaysia. Raffles Bull Zool 49:207–220

    Google Scholar 

  • Conchou L, Anderson P, Birgersson G (2017) Host plant species differentiation in a polyphagous moth: olfaction is enough. J Chem Ecol 43:794–805

    CAS  PubMed  Google Scholar 

  • Craig TP, Itami JK, Abrahamson WG, Horner JD (1993) Behavioural evidence for host-race formation in Eurosta solidaginis. Evolution 47:1696–1710

    PubMed  Google Scholar 

  • Cripps MG, Jackman SD, Roquet C, van Koten C, Rostas M, Bourdot GW, Susanna A (2016) Evolution of specialization of Cassida rubiginosa on Cirsium arvense (Compositae, Cardueae). Front Plant Sci. https://doi.org/10.3389/fpls.2016.01261

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham JP (2012) Can mechanism help explain insect host choice? J Evol Biol 25:244–251

    CAS  PubMed  Google Scholar 

  • Cunningham JP, Zalucki MP (2014) Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Ento 107:881–896

    Google Scholar 

  • Dall SRX, Cuthill IC (1997) The information costs of generalism. Oikos 80:197–202

    Google Scholar 

  • Danne AW, Llewellyn R, Huwer RK, Furlong MJ (2014) Fruitspotting bugs, Amblypelta nitda Stål and A. lutescens Distance (Hemiptera: Coreidae): a review of the potential for integrated management practices. Aust Entomol 53:112–123

    Google Scholar 

  • de Villiers EA, du Tolt WJ, Petty GT (1987) Thrips. In: Myburgh AC (ed) Crop pests in Southern Africa Vol 2, citrus and other subtropicals. Department of Agriculture and Water Supply, Pretoria, South Africa, pp 71–72

    Google Scholar 

  • Dennis RLH, Dapporto L, Fattorini S, Cook LM (2011) The generalism-specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc 104:725–737

    Google Scholar 

  • Dhileepan K, Trevino M, Raghu S (2006) Temporal patterns in incidence and abundance of Aconophora compressa (Hemiptera : Membracidae), a biological control agent for Lantana camara, on target and nontarget plants. Environ Entomol 35:1001–1012

    Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, de Barro PJ (2010) Refined global analysis of Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea) mitochondrial CO1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Google Scholar 

  • Dixon AFG (1973) Biology of aphids. In: Minks AK, Harrewijm P (eds) Studies in biology, vol 44. Edward Arnold, Southhampton

    Google Scholar 

  • Dobkin DS, Olivieri I, Ehrlich PR (1987) Rainfall and the interaction of microclimate with larval resources in the population dynamics of checkerspot butterflies (Euphydryas editha) inhabiting serpentine grassland. Oecologia 71:161–166

    CAS  PubMed  Google Scholar 

  • Emmel JF, Shields O (1978) Larval foodplant records for Papilio zelicaon in the western United States, and further evidence for the conspecificity of Papilio zelicaon and Papilio gothica. J Res Lepid 17:56–72

    Google Scholar 

  • Fernando LCP, Walter GH (1997) Species status of two host-associated populations of Aphytis lingnanensis (Hymenoptera: Aphelinidae) in citrus. Bull Ent Res 87:137–144

    Google Scholar 

  • Finlay-Doney M, Walter GH (2012) The conceptual and practical implications of interpreting diet breadth mechanistically in generalist predatory insects. Biol J Linn Soc 107:737–763

    Google Scholar 

  • Fitt GP (1991) Host selection in the Heliothinae. In: Bailey W (ed) Reproductive behaviour of insects. Individuals and populations. Springer, New York, pp 172–193

    Google Scholar 

  • Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:981–991

    CAS  PubMed  Google Scholar 

  • Foster SP, Dugdale JS, White CS (1991) Sex pheromones and the status of greenheaded and brownheaded leafroller moths in New Zealand. N Z J Zool 18:63–74

    Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci USA 43:18054–18061

    Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological speciation. Ann Rev Ecol Syst 19:207–233

    Google Scholar 

  • Garcia-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS 113:680–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gikonyo M, Niassy S, Moritz G et al (2016) Resolving the taxonomic status of Frankliniella schultzei (Thysanoptera: Thripidae) colour forms in Kenya: a morphological, biological, molecular and ecological based approach. Int J Trop Insect Sci 37:57–70

    Google Scholar 

  • Gilbert MJ (1989) Relative population levels of citrus thrips Scirtothrips aurantii on commercial citrus and adjacent bush. S Afr J Zool 25:72–76

    Google Scholar 

  • Gompert Z et al (2015) The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol Ecol 24:2777–2793

    PubMed  Google Scholar 

  • Guttman SI, Wood TK, Karlin AA (1981) Genetic differentiation along host plant lines in the sympatric Enchenopa binotata Say complex (Homoptera: Membracidae). Evol 35:205–217

    Google Scholar 

  • Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711

    CAS  PubMed  Google Scholar 

  • Hansson BS, Larsson MC, Leal WS (1999) Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol Entomol 24:121–126

    CAS  Google Scholar 

  • Hardwick DF (1965) The corn earworm complex. Mem Entomol Soc Can 97:5–247

    Google Scholar 

  • Hardy AC (1954) Escape from specialization. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. George Allen & Unwin, London, pp 122–142

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hereward JP, Walter GH (2012) Molecular interrogation of the feeding behaviour of field captured individual insects for interpretation of multiple host plant use. PLoS ONE. https://doi.org/10.1371/journal.pone.0044435

    Article  PubMed  PubMed Central  Google Scholar 

  • Hereward JP, DeBarro PJ, Walter GH (2013a) Resolving multiple host use of an emergent pest of cotton with microsatellite data and chloroplast markers (Creontiades dilutus Stal; Hemiptera, Miridae). Bull Entomol Res 103:611–618

    PubMed  Google Scholar 

  • Hereward JP, Walter GH, DeBarro PJ, Lowe AJ, Riginos C (2013b) Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species. Ecol Evol 3:807–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hereward J, Hutchinson JA, McCulloch GA, Silva R, Walter GH (2017) Divergence among generalist herbivores: the Frankliniella schultzei species complex in Australia (Thysanoptera: Thripidae). Athropod-Plant Interact 11:875–887

    Google Scholar 

  • Janz N, Nylin S (1997) The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis. Proc R Soc Lond Ser B Biol Sci 264(1382):701–707

    Google Scholar 

  • Janzen DH et al (2017) Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proc Natl Acad Sci USA 114:8313–8318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jermy T (1984) Evolution of insect host plant relationships. Am Nat 124:609–630

    Google Scholar 

  • Jones LC, Rafter MA, Walter GH (2018) Colonisation of primary and secondary host plant species by Frankliniella schultzei thrips: a balance between attraction and repulsion? Arthropod-Plant Interact 12:321–328

    Google Scholar 

  • Jones LC, Rafter MA, Walter GH (2019) Insects allocate eggs adaptively when host plants are native. Arthropod-Plant Interact 13:181–191

    Google Scholar 

  • Jurado-Rivera JA, Vogler AP, Reid CAM, Petitpierre E, Gomez-Zurita J (2009) DNA barcoding insect-host plant associations. Proc R Soc B 279:639–648

    Google Scholar 

  • Klun JA (1975) Insect sex pheromones: intraspecific pheromonal variability of Ostrinia nubilalis in North America and Europe. Environ Entomol 4:891–894

    CAS  Google Scholar 

  • Lambert DM, Paterson HEH (1984) On ‘Bridging the gap between race and species’: the isolation concept and an alternative. Proc Linn Soc NSW 107:501–514

    Google Scholar 

  • Lambert DM, Michaux B, White CS (1987) Are species self defining? Syst Zool 36:196–205

    Google Scholar 

  • Levins R, MacArthur R (1969) An hypothesis to explain the incidence of monophagy. Ecology 50:910–911

    Google Scholar 

  • Li WM, Schuler MA, Berenbaum MR (2003) Diversification of furanocoumarin- metabolizing cytochrome P450 monooxygenases in two papilionids: specificity and substrate encounter rate. Proc Natl Acad Sci USA 100:14593–14598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay KR, Furlong MJ (2016) Development, survival, and fecundity of Amblypelta lutescens lutescens (Hemiptera: Coreidae) on distinct phenological stages of different fruit-crop host plants. J Econ Entomol 109:1793–1798

    CAS  PubMed  Google Scholar 

  • Loxdale HD, Harvey JA (2016) The ‘generalism’ debate: misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol J Linn Soc 119:265–282

    Google Scholar 

  • Loxdale HD, Lushai G, Harvey JA (2011) The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol J Linn Soc 103:1–18

    Google Scholar 

  • Loxdale HD, Davis BJ, Davis RA (2016) Known knowns and unknowns in biology. Biol J Linn Soc 117:386–398

    Google Scholar 

  • Macharia I et al (2015) Diversity of thrips species and vectors of tomato spotted wilt virus in tomato production systems in Kenya. J Econ Entomol 108:20–28

    CAS  PubMed  Google Scholar 

  • Malausa T, Bethenod MT, Bontemps A, Bourguet D, Cornuet JM, Ponsard S (2005) Assortative mating in sympatric host races of the European corn borer. Science 308:258–260

    CAS  PubMed  Google Scholar 

  • Malausa T, Dalecky A, Ponsard S, Audiot P, Streiff R, Chaval Y, Bourguet D (2007) Genetic structure and gene flow in French populations of two Ostrinia taxa: host races or sibling species? Mol Ecol 16:4210–4222

    CAS  PubMed  Google Scholar 

  • Manners AG, Dhileepan K (2005) Australian Scirtothrips aurantii Faure (Thysanoptera: Thripidae) only survived on mother-of-millions (Bryophyllum delagoense) in a no- choice trial. Plant Prot Q 20:33–35

    Google Scholar 

  • Manners AG, Palmer WA, Burgos A, McCarthy J, Walter GH (2011) Relative host plant species use by the lantana biological control agent Aconophora compressa (Membracidae) across its native and introduced ranges. Biol Control 58:262–270

    Google Scholar 

  • Martel C, Réjasse A, Rousset F, Bethenod M-T, Bourget D (2003) Host-plant-associated genetic differentiation in Northern French populations of the European corn borer. Heredity 90:141–149

    CAS  PubMed  Google Scholar 

  • Mason PA, Wilkes SR, Lill JT, Singer MS (2011) Abundance trumps quality: bi-trophic performance and parasitism risk fail to explain host use in the fall webworm. Oikos 120:1509–1518

    Google Scholar 

  • McKendrick L, Provan J, Fitzpatrick U, Brown MJF, Murray TE, Stolle E, Paxton RJ (2017) Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato. Conserv Genet 18:573–584

    Google Scholar 

  • Meister H, Lindman L, Tammaru T (2015) Testing for local monophagy in the regionally oligophagous Euphydryas aurinia (Lepidoptera: Nymphalidae). J Insect Conserv 19:691–702

    Google Scholar 

  • Milne M, Walter GH (1998) Host species and plant part specificity of the polyphagous onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in an Australian cotton- growing area. Aust J Entomol 37:115–119

    Google Scholar 

  • Milne M, Walter GH (2000) Feeding and breeding across host plants within a locality by the widespread thrips Frankliniella schultzei, and the invasive potential of polyphagous herbivores. Divers Distrib 6:243–257

    Google Scholar 

  • Milne JR, Khumlekhasing M, Walter GH (1996) Understanding host plant relationships of polyphagous flower thrips, a case study of Frankliniella schultzei (Trybom). In: Goodwin S, Gillespie P (eds). Proceedings of the 1995 Australia and New Zealand Thrips Workshop: Methods, Ecology and Management, pp. 8–14. NSW Agriculture, Gosford

  • Milne M, Walter GH, Milne JR (2002) Mating aggregations and mating success in the flower thrips, Frankliniella schultzei (Thysanoptera: Thripidae), and a possible role for pheromones. J Insect Behav 15:351–368

    Google Scholar 

  • Milne M, Walter GH, Milne JR (2007) Mating behavior and species status of host-associated populations of the polyphagous thrips, Frankliniella schultzei. J Insect Behav 20:331–346

    Google Scholar 

  • Mound LA, Houston KJ (1987) An annotated check-list of Thysanoptera from Australia. British Museum (Natural History), London

    Google Scholar 

  • Mound LA, Wheeler GS, Williams DA (2010) Resolving cryptic species with morphology and DNA; thrips as a potential biocontrol agent of Brazilian peppertree, with a new species and overview of Pseudophilothrips (Thysanoptera). Zootaxa 2432:59–68

    Google Scholar 

  • Murphy SM, Loewy KJ (2015) Trade-offs in host choice of an herbivorous insect based on parasitism and larval performance. Oecologia 179:741–751

    PubMed  Google Scholar 

  • Mustaparta H (2002) Encoding of plant odour information in insects: peripheral and central mechanisms. Entomol Exp Appl 104:1–13

    CAS  Google Scholar 

  • Nagar-Rodriguez AJ, McGraw EA, Hull CD, Mensah RK, Walter GH (2009) The ecological differentiation of asexual lineages of cotton aphid: sensory physiology, and differential host associations. Biol J Linn Soc 97:503–519

    Google Scholar 

  • Nyman T (2002) The willow bud galler Euura mucronata Hartig (Hymenoptera: Tenthredinidae): one polyphage or many monophages? Heredity 88:288–295

    CAS  PubMed  Google Scholar 

  • Palmer JM (1990) Identification of the common thrips of tropical Africa (Thysanoptera: Insecta). Trop Pest Manag 36:27–49

    Google Scholar 

  • Panizzi AR (1997) Wild hosts of pentatomids: ecological significance and role in their pest status on crops. Ann Rev Entomol 42:99–122

    CAS  Google Scholar 

  • Paterson HEH (1964) Direct evidence for the specific distictness of forms A, B, and C of the Anopheles gambiae complex. Riv Malariol 43:191–196

    CAS  PubMed  Google Scholar 

  • Paterson HEH (1981) The continuing search for the unknown and unknowable: a critique of contemporary ideas on speciation. S Afr J Sci 77:113–119

    Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. In: Vrba ES (ed) Species and speciation. Transvaal Museum, Pretoria, pp 21–29

    Google Scholar 

  • Paterson HEH (1986) Environment and species. S Afr J Sci 82:62–65

    Google Scholar 

  • Paterson HEH (1991) The recognition of cryptic species among economically important insects. In: Zalucki MP (ed) Heliothis: research methods and prospects. Springer, New York, pp 1–11

    Google Scholar 

  • Popple LW, Walter GH (2010) A spatial analysis of the ecology and morphology of cicadas in the Pauropsalta annulata species complex (Hemiptera: Cicadidae). Biol J Linn Soc 101:553–565

    Google Scholar 

  • Rafter MA, Walter GH (2012) Sampling of South African citrus thrips (Scirtothrips aurantii Faure) (Thysanoptera: Thripidae) across host plant species in South Africa. Afr Entomol 20:408–410

    Google Scholar 

  • Rafter MA, Walter GH (2013a) Post hoc assessment of host plant use in a generalist invader: implications for understanding insect-plant interactions and weed biocontrol. Arthropod-Plant Interact 7:379–388

    Google Scholar 

  • Rafter MA, Walter GH (2013b) Mate recognition in the South African Citrus thrips Scirtothrips aurantii (Faure) and cross-mating tests with populations from Australia and South Africa. J Insect Behav 26:780–795

    Google Scholar 

  • Rafter MA, Gillions RM, Walter GH (2008) Generalist herbivores in weed biological control: a natural experiment with a reportedly polyphagous thrips. Biol Control 44:188–195

    Google Scholar 

  • Rafter MA, Hereward JP, Walter GH (2013) Species limits, quarantine risk and the intrigue of a polyphagous invasive pest with highly restricted host relationships in its area of invasion. Evol Appl 6:1195–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajapakse CNK, Walter GH (2007) Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arthropod-Plant Interact 1:17–26

    Google Scholar 

  • Rajapakse CNK, Walter GH, Moore CJ, Hull CD, Cribb BW (2006) Host recognition by a polyphagous lepidopteran (Helicoverpa armigera): primary host plants, host produced volatiles and neurosensory stimulation. Physiol Entomol 31:270–277

    CAS  Google Scholar 

  • Renwick JAA, Radke CD (1988) Sensory cues in host selection for oviposition by the cabbage butterfly, Pieris rapae. J Insect Physiol 34:251–257

    Google Scholar 

  • Roelofs WL, Du JW, Tang XH, Robbins PS, Eckenrode CJ (1985) Three european corn borer populations in New York based on sex pheromones and voltinism. J Chem Ecol 11:829–836

    CAS  PubMed  Google Scholar 

  • Rostelien T, Borg-Karlson A-K, Mustaparta H (2000) Selective receptor neurone responses to E-β-ocimene, β-myrcene, E, E-α-farnesene and homo-farnesene in the moth Heliothis virescens, identified by gas chromatography linked to electrophysiology. J Comp Physiol A 186:833–847

    CAS  PubMed  Google Scholar 

  • Rotenberg D, Jacobson AL, Schneweis DJ, Whiffleld AE (2015) Thrips transmission of tospoviruses. Curr Opin Virol 15:80–89

    PubMed  Google Scholar 

  • Rungrojwanich K, Walter GH (2000) The Australian fruit fly parasitoid Diachasmimorpha kraussii (Fullaway): Mating behavior, modes of sexual communication and crossing tests with D. longicaudata (Ashmead) (Hymenoptera: Braconidae: Opiinae). Pan-Pac Entomol 76:12–23

    Google Scholar 

  • Sakimura K (1969) A comment on the color forms of Frankliniella schultzei (Thysanoptera: Thripidae) in relation to transmission of the tomato-spotted wilt virus. Pac Insects 11:761–762

    Google Scholar 

  • Sakurai T (2004) Transmission of tomato spotted wilt virus by the dark form of Frankliniella schultzei (Thysanoptera: Thripidae) originating in tomato fields in Paraguay. Appl Entomol Zool 39:189–194

    Google Scholar 

  • Scheffer SJ, Lewis ML (2006) Mitochondrial phylogeography of the vegetable pest Liriomyza trifolii (Diptera: Agromyzidae): Diverged clades and invasive populations. Ann Entomol Soc Am 99:991–998

    Google Scholar 

  • Scheirs J, De Bruyn L, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc R Soc B 267:2065–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Silva R, Hereward JP, Walter GH, Wilson LJ, Furlong MJ (2018) Seasonal abundance of cotton thrips (Thysanoptera: Thripidae) across crop and non-crop vegetation in an Australian cotton producing region. Agric Ecosyst Environ 256:226–238

    Google Scholar 

  • Simmons RB, Scheffer SJ (2004) Evidence of cryptic species within the pest Copitarsia delcolora (Guenee) (Lepidoptera: Noctuidae). Ann Entomol Soc Am 97:675–680

    Google Scholar 

  • Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Nat Acad Sci USA 103:3657–3662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strausz M, Fiedler K, Franzen M, Wiemers M (2012) Habitat and host plant use of the large copper butterfly Lycaena dispar in an urban environment. J Insect Consev 16:709–721

    Google Scholar 

  • Stuhldreher G, Fartmann T (2015) Oviposition-site preferences of a declining butterfly Erebia medusa (lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur J Entomol 112:493–499

    Google Scholar 

  • Thompson JN (1993) Preference hierarchies and the origin of geographic specialization in host use in swallowtail butterflies. Evolution 47:1585–1594

    PubMed  Google Scholar 

  • Toon A, Daglish GJ, Ridley AW, Emery RN, Holloway JC, Walter GH (2016) Random mating between two widely divergent mitochondrial lineages of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae): a test of species limits in a phosphine-resistant stored product pest. J Econ Entomol 109:2221–2228

    CAS  PubMed  Google Scholar 

  • Velasco LRI, Walter GH (1992) Availability of different host plant species and changing abundance of the polyphagous bug Nezara viridula (Hemiptera: Pentatomidae). Environ Entomol 21:751–759

    Google Scholar 

  • Velasco LRI, Walter GH, Harris VE (1995) Voltinism and host-plant use by Nezara Viridula (L) (Hemiptera, Pentatomidae) in southeastern Queensland. J Aust Entomol Soc 34:193–203

    Google Scholar 

  • Visser JH, Ave DA (1978) General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarso decemlineata. Entomol Exp Appl 24:738–749

    CAS  Google Scholar 

  • Walter GH (2003) Insect pest management and ecological research Cambridge. Cambridge University Press, Cambridge

    Google Scholar 

  • Walter GH (2013) Autecology and the balance of nature: ecological laws and human-induced invasions. In: del Hoyo J, Elliott A, Christie DA (eds) The balance of nature and human impact. Cambridge University Press, New York

    Google Scholar 

  • Walter GH, Benfield MD (1994) Temporal host-plant use in 3 polyphagous Heliothinae, with special reference to Helicoverpa punctigera (Wallengren) (Noctuidae, Lepidoptera). Aust J Ecol 19:458–465

    Google Scholar 

  • Walter GH, Hengeveld R (2014) Autecology: organisms, interactions and environmental dynamics. CRC Press, Boca Raton. https://doi.org/10.1201/b16805

    Book  Google Scholar 

  • Ward LK (1988) The validity and interpretation of insect foodplant records. Br J Entomol Nat Hist 1:153–162

    Google Scholar 

  • Ward LK, Spalding DF (1993) Phytophagous British insects and mites and their food-plant families: total numbers and polyphagy. Biol J Linn Soc 41:257–276

    Google Scholar 

  • Wave HE, Shands WA, Simpson GW (1956) Recently discovered primary hosts of the foxglove aphid. J Econ Entomol 49:137

    Google Scholar 

  • Webster B, Gezan S, Bruce T, Hardie J, Pickett J (2010) Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants. Phytochemistry 71:81–89

    CAS  PubMed  Google Scholar 

  • Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Google Scholar 

  • Wijkamp I, Almarza N, Goldbach R, Peters D (1995) Distinct levels of specificity in thrips transmission of tospoviruses. Phytopathology 85:1069–1074

    Google Scholar 

  • Wiklund C (1974) The concept of oligophagy and the natural habitats and host plants of Papilo machaon in Fennoscandia. Entomol Scand 5:151–160

    Google Scholar 

  • Wilson LJ, Bauer LR (1993) Species composition and seasonal abundance of thrips (Thysanoptera) on cotton in the Namoi Valley. J Aust Entomol Soc 32:187–192

    Google Scholar 

  • Wint W (1983) The role of alternative host-plant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera: Geometridae). J Anim Ecol 52:439–450

    Google Scholar 

  • Wong JS, Wallingford AK, Loeb GM, Lee JC (2018) Physiological status of Drosophila suzukii (Diptera: Drosophilidae) affects their response to attractive odours. J App Entomol 142:473–482

    Google Scholar 

  • Wongnikong W, van Brunschot SL, Hereward JP, De Barro PJ, Walter GH (2019) Testing mate recognition through reciprocal crosses of two native populations of the whitefly Bemisia tabaci (Gennadius) in Australia. Bull Entomol Res. https://doi.org/10.1017/S0007485319000683

    Article  PubMed  Google Scholar 

  • Yaku A, Walter GH, Najar-Rodriguez AJ (2007) Thrips see red-flower colour and the host relationships of a polyphagous anthophilic thrips. Ecol Entomol 32:527–535

    Google Scholar 

  • Zalucki MP, Daglish G, Firempong S, Twine P (1986) The biology and ecology of Heliothis amigera (Hubner) and Heliothis punctigera Wallengren (Lepidoptera, Noctuidae) in Australia-What do we know? Aust J Zool 34:779–814

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the students and research associates of the Walter laboratory who have contributed to studies, analysis and discussions on insects that use multiple host plant species. In particular, James Hereward provided much feedback in the initial stages of the development of this manuscript. We thank the Cotton Research and Development Corporation, Grains Research and Development Corporation and The University of Queensland who have, over the years, funded various aspects of the work we present as examples here. Thanks also to colleagues from CSIRO and UQ as well as the two anonymous reviewers and the editor, all of whom took time to provide valuable feedback on this paper in the final stages of its development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rafter.

Additional information

Handling Editor: Ingeborg Menzler-Hokkanen.

The ideas developed in this paper are consequences of the conceptual advances made by Hugh Paterson (26th December 1926 to 12th October 2019). We dedicate this contribution to Hugh with the hope that it would have given him pleasure.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafter, M.A., Walter, G.H. Generalising about generalists? A perspective on the role of pattern and process in investigating herbivorous insects that use multiple host species. Arthropod-Plant Interactions 14, 1–20 (2020). https://doi.org/10.1007/s11829-019-09737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09737-5

Keywords

Navigation