Skip to main content

Advertisement

Log in

Effect of ring substitution on synthesis of benzimidazolium salts and their silver(I) complexes: characterization, electrochemical studies and evaluation of anticancer potential

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of bidendate 5,6-dimethyl benzimidazolium-based N-heterocyclic carbene (NHC) proligands and their silver complexes were synthesized. The synthetic approaches to the proligands were constrained by the methyl substituents, which impose a significant impact on the reactivity according to their sigma electron-donating abilities. The corresponding silver(I) complexes were obtained by in situ deprotonation of the NHCs and characterized by physicochemical and spectroscopic methods. In addition, a single-crystal X-ray diffraction study of complex C5 revealed its dinuclear structure. Irreversibility of redox events was observed in electrochemical studies of these complexes. In vitro anticancer studies of the azolium salts and their silver(I) complexes against human breast cancer (MDA-MB-231), colon cancer (HCT-116) and normal endothelial (EA.hy926) cells revealed that all the compounds are more cytotoxic to cancer cells than to normal cells and the complexes are more potent than their corresponding NHC proligands. Increased chain length, the presence of methyl substituents on the benzimidazole ring and aryl linker and two silver centres all enhance the biopotency of these complexes.

Graphical abstract

Substituted benzimidazolium-based N-heterocyclic carbene (NHC) proligands and silver complexes are advantageous anticancer tools for medicinal chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Díez-González S (2016) N-heterocyclic carbenes: from laboratory to curiosities to efficient synthetic tools, vol 27. Royal Society of Chemistry, London

    Book  Google Scholar 

  2. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) An overview of N-heterocyclic carbenes. Nature 510:485

    Article  CAS  PubMed  Google Scholar 

  3. Mercs L, Albrecht M (2010) Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem Soc Rev 39:1903–1912

    Article  CAS  PubMed  Google Scholar 

  4. Al-Thagfi JR (2014) Synthesis, characterization and reactivity study of bis (imino)-N-heterocyclic carbene transition metal complexes. Ph.D. thesis, York University, Toronto, Canada

  5. Haque RA, Hasanudin N, Hussein MA, Ahamed SA, Iqbal MA (2017) Bis-N-heterocyclic carbene silver (I) and palladium (II) complexes: efficient antiproliferative agents against breast cancer cells. Inorg Nano Metal Chem 47:131–137

    Article  CAS  Google Scholar 

  6. Haque RA, Iqbal MA, Budagumpi S, Khadeer Ahamed MB, Abdul Majid AM, Hasanudin N (2013) Binuclear meta-xylyl-linked Ag (I)–N-heterocyclic carbene complexes of N-alkyl/aryl-alkyl-substituted bis-benzimidazolium salts: synthesis, crystal structures and in vitro anticancer studies. Appl Organomet Chem 27:214–223

    Article  CAS  Google Scholar 

  7. Iqbal MA, Haque RA, Ahamed MBK, Majid AA, Al-Rawi SS (2013) Synthesis and anticancer activity of para-xylyl linked bis-benzimidazolium salts and respective Ag (I) N-heterocyclic carbene complexes. Med Chem Res 22:2455–2466

    Article  CAS  Google Scholar 

  8. Iqbal MA, Haque RA, Budagumpi S, Ahamed MBK, Majid AMA (2013) Short metal–metal separations and in vitro anticancer studies of a new dinuclear silver (I)–N-heterocyclic carbene complex of para-xylyl-linked bis-benzimidazolium salt. Inorg Chem Commun 28:64–69

    Article  CAS  Google Scholar 

  9. Iqbal MA, Umar MI, Haque RA, Ahamed MBK, Asmawi MZB, Majid AMSA (2015) Macrophage and colon tumor cells as targets for a binuclear silver (I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. J Inorg Biochem 146:1–13

    Article  CAS  PubMed  Google Scholar 

  10. Asif M, Iqbal MA, Hussein MA, Oon CE, Haque RA, Ahamed MBK, Majid ASA, Majid AMSA (2016) Human colon cancer targeted pro-apoptotic, anti-metastatic and cytostatic effects of binuclear silver (I)–N-heterocyclic carbene (NHC) complexes. Eur J Med Chem 108:177–187

    Article  CAS  PubMed  Google Scholar 

  11. Patil S, Deally A, Gleeson B, Hackenberg F, Müller-Bunz H, Paradisi F, Tacke M (2011) Synthesis, cytotoxicity and antibacterial studies of novel symmetrically and non-symmetrically p-nitrobenzyl-substituted N-heterocyclic carbene-silver (I) acetate complexes. Z anorganische allg Chem 637:386–396

    Article  CAS  Google Scholar 

  12. Narasimhan B, Sharma D, Kumar P (2012) Benzimidazole: a medicinally important heterocyclic moiety. Med Chem Res 21:269–283

    Article  CAS  Google Scholar 

  13. Catalano VJ, Malwitz MA (2003) Short metal–metal separations in a highly luminescent trimetallic Ag (I) complex stabilized by bridging NHC ligands. Inorg Chem 42:5483–5485

    Article  CAS  PubMed  Google Scholar 

  14. Catalano VJ, Etogo AO (2005) Luminescent coordination polymers with extended Au(I)–Ag (I) interactions supported by a pyridyl-substituted NHC ligand. J Organomet Chem 690:6041–6050

    Article  CAS  Google Scholar 

  15. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med Res Rev 30:550–580

    CAS  PubMed  Google Scholar 

  16. Berners-Price SJ, Filipovska A (2011) Gold compounds as therapeutic agents for human diseases. Metallomics 3:863–873

    Article  CAS  PubMed  Google Scholar 

  17. Banti C, Giannoulis A, Kourkoumelis N, Owczarzak A, Poyraz M, Kubicki M, Charalabopoulos K, Hadjikakou S (2012) Mixed ligand–silver (I) complexes with anti-inflammatory agents which can bind to lipoxygenase and calf-thymus DNA, modulating their function and inducing apoptosis. Metallomics 4:545–560

    Article  CAS  PubMed  Google Scholar 

  18. Banti C, Kyros L, Geromichalos G, Kourkoumelis N, Kubicki M, Hadjikakou S (2014) A novel silver iodide metalo-drug: experimental and computational modelling assessment of its interaction with intracellular DNA, lipoxygenase and glutathione. Eur J Med Chem 77:388–399

    Article  CAS  PubMed  Google Scholar 

  19. Habib A, Vishkaei MN, Iqbal MA, Bhatti HN, Ahmed MK, Majid AA (2019) Unsymmetrically substituted benzimidazolium based silver (I)–N-heterocyclic carbene complexes: synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2019.03.002

    Article  Google Scholar 

  20. Gümüşada R, Günay ME, Özdemir N, Çetinkaya B (2016) Bicyclic N-heterocyclic carbene (NHC) ligand precursors and their palladium complexes. J Coord Chem 69:1463–1472

    Article  CAS  Google Scholar 

  21. Asekunowo PO, Haque RA (2014) Counterion-induced modulation in biochemical properties of nitrile functionalized silver (I)–N-heterocyclic carbene complexes. J Coord Chem 67:3649–3663

    Article  CAS  Google Scholar 

  22. Zulikha HZ, Haque RA, Budagumpi S, Majid AMA (2014) Topology control in nitrile-functionalized silver (I)–N-heterocyclic carbene complexes: synthesis, molecular structures, and in vitro anticancer studies. Inorg Chim Acta 411:40–47

    Article  CAS  Google Scholar 

  23. Karataş MO, Olgundeniz B, Günal S, Özdemir I, Alıcı B, Çetinkaya E (2016) Synthesis, characterization and antimicrobial activities of novel silver (I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg Med Chem 24:643–650

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan HZ, Li B, Byers JA (2012) Synthesis and characterization of a bis (imino)-N-heterocyclic carbene analogue to bis (imino) pyridine iron complexes. Organometallics 31:7343–7350

    Article  CAS  Google Scholar 

  25. Połczyński P, Jurczakowski R, Grochala W (2013) Strong and long-lived free-radical oxidizer based on silver (II). Mechanism of Ag (I) electrooxidation in concentrated H2SO4. J Phys Chem C 117:20689–20696

    Article  CAS  Google Scholar 

  26. Gautier A, Cisnetti F (2012) Advances in metal–carbene complexes as potent anti-cancer agents. Metallomics 4:23–32

    Article  CAS  PubMed  Google Scholar 

  27. Liu W, Gust R (2013) Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev 42:755–773

    Article  CAS  PubMed  Google Scholar 

  28. Oehninger L, Rubbiani R, Ott I (2013) N-heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans 42:3269–3284

    Article  CAS  PubMed  Google Scholar 

  29. Jafari SF, Khadeer Ahamed MB, Iqbal MA, Al Suede FSR, Khalid SH, Haque RA, Nassar ZD, Umar MI, Abdul Majid AMS (2014) Increased aqueous solubility and proapoptotic activity of potassium koetjapate against human colorectal cancer cells. J Pharm Pharmacol 66:1394–1409

    Article  CAS  PubMed  Google Scholar 

  30. Kascatan-Nebioglu A, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2007) N-heterocyclic carbene–silver complexes: a new class of antibiotics. Coord Chem Rev 251:884–895

    Article  CAS  Google Scholar 

  31. Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W, Zorbas H, Dyson PJ, Keppler BK (2008) KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155

    Article  CAS  PubMed  Google Scholar 

  32. Snyder R, Hedli CC (1996) An overview of benzene metabolism. Environ Health Perspect 104:1165–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedberg EC, Walker GC, Siede W, Wood RD (2005) DNA repair and mutagenesis. American Society for Microbiology Press, Washington

    Google Scholar 

  34. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Abdullah AAA (2015) Silver (I) complexes of mono-and bidentate N-heterocyclic carbene ligands: synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur J Med Chem 90:82–92

    Article  CAS  PubMed  Google Scholar 

  35. Saint R (1999) 6.06 integration software for single crystal data. Bruker AXS Inc., Madison

    Google Scholar 

  36. Sheldrick G (2008) SADABS, Bruker area detector absorption corrections. Bruker AXS, Madison (based on method described in: Blessing RH. Acta Crystallogr A 51:33–38)

    Google Scholar 

  37. Release X (1997) 5.10, X-ray data preparation and reciprocal space exploration program. Bruker AXS Inc., Madison

    Google Scholar 

  38. Release S (1997) 5.10, The complete software package for single-crystal structure determination. Bruker AXS Inc., Madison

    Google Scholar 

  39. Sheldrick G (1997) SHELXS 97, program for the solution of crystal structure. University of Göttingen, Göttingen

    Google Scholar 

Download references

Acknowledgements

Aqsa Habib would like to thank Higher Education Commission (HEC), Pakistan, for financial support during International Research Support Initiative Program (IRSIP) (1-8/HEC/HRD/2017/6940). She would also like to appreciate the efforts of Prof. Davit Zargarian (University de Montreal, Canada) for facilitating during research work in his laboratory during IRSIP period and Dr. Loic Mangin (University de Montreal, Canada) for solving crystal structure and helpful discussion for the preparation of this manuscript. Dr. Muhammad Adnan Iqbal is thankful to HEC for awarding research grant No. NRPU-8396 under National Research Program for Universities (NRPU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Adnan Iqbal or Haq Nawaz Bhatti.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, A., Iqbal, M.A., Bhatti, H.N. et al. Effect of ring substitution on synthesis of benzimidazolium salts and their silver(I) complexes: characterization, electrochemical studies and evaluation of anticancer potential. Transit Met Chem 44, 431–443 (2019). https://doi.org/10.1007/s11243-019-00321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00321-7

Navigation