Skip to main content
Log in

Law of the First Passage Triple of a Spectrally Positive Strictly Stable Process

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For a spectrally positive and strictly stable process with index in (1, 2), a series representation is obtained for the joint distribution of the “first passage triple” that consists of the time of first passage and the undershoot and the overshoot at first passage. The result leads to several corollaries, including (1) the joint law of the first passage triple and the pre-passage running supremum, and (2) at a fixed time point, the joint law of the process’ value, running supremum, and the time of the running supremum. The representation can be decomposed as a sum of strictly positive functions that allow exact sampling of the first passage triple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernyk, V., Dalang, R.C., Peskir, G.: The law of the supremum of a stable Lévy process with no negative jumps. Ann. Probab. 36(5), 1777–1789 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  3. Breiman, L.: Probability. Classics in Applied Mathematics, vol. 7. Society for Industrial and Applied Mathematics, Philadelphia (1992). (Corrected reprint of the 1968 original)

    Google Scholar 

  4. Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)

    Article  MathSciNet  Google Scholar 

  5. Devroye, L.: Nonuniform Random Variate Generation. Springer, New York (1986)

    Book  Google Scholar 

  6. Doney, R.A.: Fluctuation Theory for Lévy Processes. Lecture Notes in Mathematics, vol. 1897. Springer, Berlin (2007)

    Google Scholar 

  7. Doney, R.A., Kyprianou, A.E.: Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16(1), 91–106 (2006)

    Article  MathSciNet  Google Scholar 

  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. III. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  10. Gawronski, W.: Asymptotic forms for the derivatives of one-sided stable laws. Ann. Probab. 16, 3 (1988)

    Article  MathSciNet  Google Scholar 

  11. Graczyk, P., Jakubowski, T.: On Wiener–Hopf factors for stable processes. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 9–19 (2011)

    Article  MathSciNet  Google Scholar 

  12. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance. Springer-Verlag, London Ltd, London (2009)

    Book  Google Scholar 

  13. Michna, Z., Palmowski, Z., Pistorius, M.: The distribution of the supremum for spectrally asymmetric Lévy processes. Electron. Commun. Probab. 20(24), 10 (2015)

    MATH  Google Scholar 

  14. Molchan, G.M.: On the maximum of stable Lévy processes. Theory Probab. Appl. 45(2), 343–349 (2001)

    Article  MathSciNet  Google Scholar 

  15. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. U.S. Department of Commerce National Institute of Standards and Technology, Washington (2010)

  16. Peskir, G.: The law of the hitting times to points by a stable Lévy process with no negative jumps. Electron. Commun. Probab. 13, 653–659 (2008)

    Article  MathSciNet  Google Scholar 

  17. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  18. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  19. Simon, T.: Fonctions de Mittag–Leffler et processus de Lévy stables sans sauts négatifs. Expo. Math. 28(3), 290–298 (2010)

    Article  MathSciNet  Google Scholar 

  20. Simon, T.: Hitting densities for spectrally positive stable processes. Stochastics 83(2), 203–214 (2011)

    Article  MathSciNet  Google Scholar 

  21. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability: Stable Distributions and Their Applications. Modern Probability and Statistics. VSP, Utrecht (1999)

    Book  Google Scholar 

  22. Zolotarev, V.M.: On the representation of stable laws by integrals. Sel. Transl. Math. Stat. Probab. 6, 84–88 (1966). (First published in Russian in 1964)

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by NSF Grant DMS 1720218. The author would like to thank two referees for their careful reading of the manuscript and useful suggestions, in particular, one that significantly simplifies the proof of the main theorem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Chi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

On the connection between (9) and (10) When \(\alpha =2\), \(\sin (\pi k/\alpha )\) is 0 if k is even and is \((-1)^j\) is \(k = 2j + 1\) for integer \(j\ge 0\). Then, the series in (9) can be written as

$$\begin{aligned} \frac{1}{\pi } \sum _{j=0,n=1}^\infty \frac{\Gamma (j+1/2+n)}{(2j+1)!(2n-1)!} (-1)^{j+n+1} [(2j+1)c + (2n-1)(c-x)](c-x)^{2j} c^{2n-2}. \end{aligned}$$

Write \(n=l+1\) and \(m=j+l\). Then, the series becomes

$$\begin{aligned}&\frac{1}{\pi } \sum _{j,l=0}^\infty \frac{\Gamma (j + l+3/2)}{(2j+1)!(2l+1)!} (-1)^{j+l} [(2j+1)(c-\!x)^{2j} c^{2l+\!1} \!+\! (2l+1) (c-\!x)^{2j+1} c^{2l}]\\&= \frac{1}{\pi } \sum _{m=0}^\infty \frac{\Gamma (m+3/2)}{(2m+1)!} (-1)^m \sum ^m_{j=0}\left[ \frac{(c-x)^{2j} c^{2m-2j+1}}{(2j)!(2m-2j+1)!} + \frac{(c-x)^{2j+1} c^{2m-2j}}{(2j+1)!(2m-2j)!} \right] \\&= \frac{1}{\pi } \sum _{m=0}^\infty \frac{\Gamma (m+3/2)}{(2m+1)!} (-1)^m \sum ^{2m+1}_{s=0} \frac{(2m+1)!}{s!(2m+1-s)!} (c-x)^s c^{2m+1-s}\\&= \frac{1}{\pi } \sum _{m=0}^\infty \frac{\sqrt{\pi }}{2^{2m+1} m!}(-1)^m (2c-x)^{2m+1}\\&= \frac{2c-x}{2\sqrt{\pi }}\exp \left\{ -\frac{(2c-x)^2}{4}\right\} . \end{aligned}$$

Since \((X_t)_{t\ge 0}\sim (W_{2t})_{t\ge 0}\), this is essentially the same result as (10). \(\square \)

Proof of Eq. (16) We need the following refined version of Lemma 16(a).

Lemma 21

There is a constant \(M>0\), such that for all \(0<x<1/2\) and all \(t>0\),

$$\begin{aligned} h_1(1-x,t) \le M x(t+t^{1-{1/\alpha }}). \end{aligned}$$

Assume the lemma is true for now. Then, given \(c>0\), by scaling, for all \(0<x<c/2\), \(h_c(c-x, t)\le M x(t+t^{1-{1/\alpha }})\) for some \(M = M(c)>0\). Then, by Lemma 16(a) and dominated convergence, for each \(q>0\),

$$\begin{aligned} \int _0^\infty m(c,t) e^{-q t}\,\mathrm {d}t = \lim _{x\rightarrow 0} \frac{1}{x}\int _0^\infty h_c(c-x,t) e^{-q t}\,\mathrm {d}t. \end{aligned}$$

However, by scaling (6) and Proposition 10, for \(0<x<c/2\),

$$\begin{aligned} \frac{1}{x}\int _0^\infty h_c(c-x,t) e^{-q t}\,\mathrm {d}t&= \frac{e^{-q^{1/\alpha }x}-1}{x} \sum _{n=1}^\infty \frac{q^{n-1} c^{\alpha n-1}}{\Gamma (\alpha n)}\\&\quad + \sum _{n=1}^\infty \frac{q^{n-1} [c^{\alpha n - 1} -(c-x)^{\alpha n-1}]}{x\Gamma (\alpha n)}. \end{aligned}$$

As a result,

$$\begin{aligned} \int _0^\infty m(c,t) e^{-q t}\,\mathrm {d}t = \sum _{n=1}^\infty \frac{q^{n-1} c^{\alpha n - 2}}{\Gamma (\alpha n-1)} - q^{{1/\alpha }} \sum _{n=1}^\infty \frac{q^{n-1} c^{\alpha n-1}}{\Gamma (\alpha n)}. \end{aligned}$$

Provided that \(\beta > q^{1/\alpha }\), integration term by term of the r.h.s. yields

$$\begin{aligned} \int _0^\infty \left( \int _0^\infty m(c,t) e^{-q t}\,\mathrm {d}t\right) e^{-\beta c}\,\mathrm {d}c = \sum _{n=1}^\infty \frac{q^{n-1}}{\beta ^{\alpha n-1}} - q^{1/\alpha }\sum _{n=1}^\infty \frac{q^{n-1}}{\beta ^{\alpha n}} = \frac{\beta - q^{1/\alpha }}{\beta ^\alpha - q}. \end{aligned}$$

By analytic extension, the equality still holds for \(0\le \beta \le q^{1/\alpha }\). Then, by (15), the proof is complete. \(\square \)

Proof of Lemma 21

By (22) and integral by parts,

$$\begin{aligned} h_1(1-x,t) = g_t(1-x) - g_t(1) + \int ^t_0 \overline{F}_{-x}(t-s) \frac{\partial g_s(1)}{\partial s}\,\mathrm {d}s, \end{aligned}$$
(45)

where \(\overline{F}_{-x}(t) = \int ^\infty _t f_{-x}(s)\,\mathrm {d}s = \mathbb {P}\{\tau _{-x} > t\}\). For \(0<x<1/2\), \(g_t(1-x) - g_t(1) = - g'_t(z) x\) for some \(z\in (1-x,1)\). Clearly, \(z>1/2\). It is not hard to show that \(M_1 := \sup _{y>0} [y^{\alpha + 2} |g'_1(y)|]<\infty \) ([18], p. 88). On the other hand, by \(g_t(z) = t^{-{1/\alpha }} g_1(t^{-{1/\alpha }} z)\), \(g'_t(z) = t^{-2/\alpha } g'_1(t^{-{1/\alpha }} z)\). Then,

$$\begin{aligned} |g_t(1-x) - g_t(1)| = x t^{-2/\alpha } |g'_1(t^{-{1/\alpha }} z)| \le x t^{-2/\alpha } M_1 (t^{-{1/\alpha }} z)^{-\alpha -2} \le M_1 2^{\alpha + 2} x t. \end{aligned}$$
(46)

Next, by \(g_s(1) = s^{-{1/\alpha }} g_1(s^{-{1/\alpha }})\), \(|\partial g_s(1)/\partial s| \le ({1/\alpha }) [s^{-{1/\alpha }-1} g_1(s^{-{1/\alpha }}) + s^{-2/\alpha -1} |g'_1(s^{-{1/\alpha }})|]\) is bounded. Then, for some \(M_2>0\),

$$\begin{aligned} \left| \int ^t_0 \overline{F}_{-x}(t-s) \frac{\partial g_s(1)}{\partial s}\,\mathrm {d}s \right| \le M_2 \int ^t_0 \overline{F}_{-x}(s)\,\mathrm {d}s = M_2 x^\alpha \int ^{x^{-\alpha } t}_0 \overline{F}_{-1}(s) \,\mathrm {d}s, \end{aligned}$$

where the equality is due to \(\overline{F}_{-x}(s) = \overline{F}_{-1}(x^{-\alpha } s)\) and change of variable. Because \(\overline{F}_{-1}(s)\) is decreasing with \(\overline{F}_{-1}(0)=1\) and is slowly varying at \(\infty \) with index \(-{1/\alpha }\), there is a constant \(M_3>0\) such that \(\int ^y_0 \overline{F}_{-1}(s)\,\mathrm {d}s \le M_3 y^{1-{1/\alpha }}\) for all \(y>0\). It follows that

$$\begin{aligned} \left| \int ^t_0 \overline{F}_{-x}(t-s) \frac{\partial g_s(1)}{\partial s}\,\mathrm {d}s \right| \le M_2 M_3 x t^{1-{1/\alpha }}. \end{aligned}$$
(47)

Then, the proof is complete by combining (45)–(47). \(\square \)

Proof of Eq. (20) Denote the r.h.s. of (20) by \(v^q(x)\). The task is to show \(\widehat{v^q} = \widehat{u^q}\), where, for example, \(\widehat{v^q}(x) = {v^q}(-x)\). Since \(v^q\) is a version of the q-resolvent density, according to the proof of Proposition I.13 of [2], \((r-q) U^r \widehat{v^q}\uparrow \widehat{u^q}\) as \(r\rightarrow \infty \), where \(U^r\) is the r-resolvent operator. For \(r>q\),

$$\begin{aligned} U^r \widehat{v^q}(x)&= \int _0^\infty e^{-r t} \mathbb {E}^x[\widehat{v^q}(X_t)]\,\mathrm {d}t\\&= \int _0^\infty e^{-r t} \left[ \int \left( \int _0^\infty e^{-q s} g_s(-y)\,\mathrm {d}s\right) g_t(y-x)\,\mathrm {d}y\right] \,\mathrm {d}t\\&= \int _0^\infty \int _0^\infty e^{-r t -q s} g_{s+t}(-x)\,\mathrm {d}s\,\mathrm {d}t\\&= (r-q)^{-1} \int _0^\infty (1-e^{(q-r) s}) e^{-q s}g_s(-x)\,\mathrm {d}s. \end{aligned}$$

Then, by monotone convergence, \((r-q) U^r \widehat{v^q}(x)\rightarrow \widehat{v^q}(x)\), giving \(\widehat{v^q}(x) = \widehat{u^q}(x)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Z. Law of the First Passage Triple of a Spectrally Positive Strictly Stable Process. J Theor Probab 33, 715–748 (2020). https://doi.org/10.1007/s10959-019-00898-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00898-w

Keywords

Mathematics Subject Classification (2010)

Navigation