Skip to main content
Log in

Catalytic upgrading of heavy oil over mesoporous HZSM-5 zeolite in the presence of atmospheric oxygen flow

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Alkaline treated ZSM-5 zeolite was used in heavy oil upgrading process under atmospheric oxygen flow. Alkaline treatment was employed to induce mesopores in ZSM-5 catalyst structure to alleviate the mass transfer and reduce diffusion limitations. XRD, BET and XRF analyses were employed to investigate the effect of alkaline treatment. Effect of oxygen atmospheric flow, supplied by air stream, on heavy oil catalytic cracking process was investigated in a fixed bed reactor. Obtained liquids were analyzed by FTIR and GC/SIMDIS. Results revealed that percent of light oil (naphtha + kerosene) produced was nearly doubled in the presence of 5 wt% oxygen in the feed. Conversion of heavy oil (content with the BPT higher than 370 °C) was enhanced from 45.7% up to 58.1% by applying air stream. Viscosity reduction was elevated from 40% in nitrogen atmosphere to 53% in presence of 5 wt% oxygen content. Spent catalysts were characterized by TGA, XRD and BET analyses in order to determine coke deposition and catalyst structural stability. Oxidative cracking increased the amount of coke production over the catalyst, however, structural stability of the catalyst was not altered compared to conventional cracking process and crystalline structure of the catalyst was preserved after 5 h time on stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarkar B, Kwek W, Verma D, Kim J (2017) Effective vacuum residue upgrading using sacrificial nickel(II) dimethylglyoxime complex in supercritical methanol. Appl Catal A: Gen 545:148–158. https://doi.org/10.1016/j.apcata.2017.07.033

    Article  CAS  Google Scholar 

  2. Sun H, Peng P, Wang Y, Li C, Subhan F, Bai P, Xing W, Zhang Z, Liu Z, Yan Z (2017) Preparation, scale-up and application of meso-ZSM-5 zeolite by sequential desilication–dealumination. J Porous Mater 24(6):1513–1525. https://doi.org/10.1007/s10934-017-0391-4

    Article  CAS  Google Scholar 

  3. Nguyen-Huy C, Shin EW (2017) Oxidative cracking of vacuum residue with steam over NiK/CeZr–Al catalysts. Fuel 192:149–157. https://doi.org/10.1016/j.fuel.2016.12.026

    Article  CAS  Google Scholar 

  4. Ghashghaee M, Shirvani S (2018) Two-step thermal cracking of an extra-heavy fuel oil: experimental evaluation, characterization, and kinetics. Ind Eng Chem Res 57(22):7421–7430. https://doi.org/10.1021/acs.iecr.8b00819

    Article  CAS  Google Scholar 

  5. Xin L, Liu X, Chen X, Feng X, Liu Y, Yang C (2017) Efficient conversion of light cycle oil into high-octane-number gasoline and light olefins over a mesoporous ZSM-5 catalyst. Energy Fuels 31(7):6968–6976. https://doi.org/10.1021/acs.energyfuels.7b00852

    Article  CAS  Google Scholar 

  6. Rana MS, Sámano V, Ancheyta J, Diaz JAI (2007) A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 86(9):1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004

    Article  CAS  Google Scholar 

  7. Li Y, Sun H, Feng R, Wang Y, Subhan F, Yan Z, Zhang Z, Liu Z (2015) Synthesis of ZSM-5 zeolite from diatomite for fluid catalytic cracking (FCC) application. Appl Petrochem Res 5(4):347–353. https://doi.org/10.1007/s13203-015-0113-2

    Article  CAS  Google Scholar 

  8. Vu XH, Truong TT, Armbruster U, Martin A (2018) Influence of post-synthetic treatments of aluminum-rich ZSM-5 on the catalytic cracking of bulky hydrocarbons at low temperature. React Kinet Mech Cat 124(1):437–452. https://doi.org/10.1007/s11144-017-1317-5

    Article  CAS  Google Scholar 

  9. Khoshbin R, Karimzadeh R (2017) Synthesis of mesoporous ZSM-5 from rice husk ash with ultrasound assisted alkali-treatment method used in catalytic cracking of light naphtha. Adv Powder Technol 28(8):1888–1897. https://doi.org/10.1016/j.apt.2017.04.024

    Article  CAS  Google Scholar 

  10. Fathi S, Sohrabi M, Falamaki C (2014) Improvement of HZSM-5 performance by alkaline treatments: comparative catalytic study in the MTG reactions. Fuel 116:529–537. https://doi.org/10.1016/j.fuel.2013.08.036

    Article  CAS  Google Scholar 

  11. Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramírez J (2007) Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J Am Chem Soc 129(2):355–360. https://doi.org/10.1021/ja065737o

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Liu S, Xie S, Xu L (2009) Promoted metal utilization capacity of alkali-treated zeolite: preparation of Zn/ZSM-5 and its application in 1-hexene aromatization. Appl Catal A: Gen 360(1):8–16. https://doi.org/10.1016/j.apcata.2009.02.039

    Article  CAS  Google Scholar 

  13. Song Y, Zhu X, Song Y, Wang Q, Xu L (2006) An effective method to enhance the stability on-stream of butene aromatization: post-treatment of ZSM-5 by alkali solution of sodium hydroxide. Appl Catal A: Gen 302(1):69–77. https://doi.org/10.1016/j.apcata.2005.12.023

    Article  CAS  Google Scholar 

  14. Zhao L, Shen B, Gao J, Xu C (2008) Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J Catal 258(1):228–234. https://doi.org/10.1016/j.jcat.2008.06.015

    Article  CAS  Google Scholar 

  15. Ogura M, Shinomiya S-y, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique—new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A: Gen 219(1–2):33–43. https://doi.org/10.1016/S0926-860X(01)00645-7

    Article  CAS  Google Scholar 

  16. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A: Gen 449:188–197. https://doi.org/10.1016/j.apcata.2012.10.003

    Article  CAS  Google Scholar 

  17. Jin L, Zhou X, Hu H, Ma B (2008) Synthesis of 2,6-dimethylnaphthalene by methylation of 2-methylnaphthalene on mesoporous ZSM-5 by desilication. Catal Commun 10(3):336–340. https://doi.org/10.1016/j.catcom.2008.09.024

    Article  CAS  Google Scholar 

  18. Zhao L, Gao J, Xu C, Shen B (2011) Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking. Fuel Process Technol 92(3):414–420. https://doi.org/10.1016/j.fuproc.2010.10.003

    Article  CAS  Google Scholar 

  19. Groen JC, Moulijn JA, Perez-Ramirez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16(22):2121–2131. https://doi.org/10.1039/B517510K

    Article  CAS  Google Scholar 

  20. Wang D, Jin L, Li Y, Hu H (2017) Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts. Fuel 210:803–810. https://doi.org/10.1016/j.fuel.2017.09.008

    Article  CAS  Google Scholar 

  21. Fumoto E, Sato S, Takanohashi T (2011) Production of light oil by oxidative cracking of oil sand bitumen using iron oxide catalysts in a steam atmosphere. Energy Fuels 25(2):524–527. https://doi.org/10.1021/ef101069m

    Article  CAS  Google Scholar 

  22. Funai S, Fumoto E, Tago T, Masuda T (2010) Recovery of useful lighter fuels from petroleum residual oil by oxidative cracking with steam using iron oxide catalyst. Chem Eng Sci 65(1):60–65. https://doi.org/10.1016/j.ces.2009.03.028

    Article  CAS  Google Scholar 

  23. Shvets VF, Sapunov VN, Kozlovskiy RA, Luganskiy AI, Gorbunov AV, Sovetin FS, Gartman TN (2017) Cracking of heavy oil residues in a continuous flow reactor, initiated by atmospheric oxygen. Chem Eng J 329:275–282. https://doi.org/10.1016/j.cej.2017.05.104

    Article  CAS  Google Scholar 

  24. Shvets VF, Kozlovskii RA, Luganskii AI, Gorbunov AV, Suchkov YP (2017) The induced cracking of heavy oils of different nature and compositions in a continuous flow reactor. Theor Found Chem Eng 51(4):571–574. https://doi.org/10.1134/s0040579516050225

    Article  CAS  Google Scholar 

  25. Boyadjian C, Seshan K, Lefferts L, van der Ham AGJ, van den Berg H (2011) Production of C3/C4 olefins from n-hexane: conceptual design of a catalytic oxidative cracking process and comparison to steam cracking. Ind Eng Chem Res 50(1):342–351. https://doi.org/10.1021/ie101432r

    Article  CAS  Google Scholar 

  26. Kolesnikov SI, Zvyagin VO, Kolesnikov IM (1999) Catalytic cracking and reforming in the presence of atmospheric oxygen. Chem Technol Fuels Oils 35(2):57–60. https://doi.org/10.1007/bf02694144

    Article  CAS  Google Scholar 

  27. Ibrasheva RK, Mataeva ZT, Zhubanov KA (2001) Oxidative catalytic cracking of heavy oil residues. Eurasian Chemico-Technol J 3(2):97–106https://doi.org/10.18321/ectj551

    Article  CAS  Google Scholar 

  28. Ebrahiminejad M, Karimzadeh R (2019) Hydrocracking and hydrodesulfurization of diesel over zeolite beta-containing NiMo supported on activated red mud. Adv Powder Technol 30(8):1450–1461. https://doi.org/10.1016/j.apt.2019.04.021

    Article  CAS  Google Scholar 

  29. Becker PJ, Serrand N, Celse B, Guillaume D, Dulot H (2016) Comparing hydrocracking models: continuous lumping vs. single events. Fuel 165:306–315. https://doi.org/10.1016/j.fuel.2015.09.091

    Article  CAS  Google Scholar 

  30. Galarraga CE, Scott C, Loria H, Pereira-Almao P (2012) Kinetic models for upgrading Athabasca bitumen using unsupported NiWMo catalysts at low severity conditions. Ind Eng Chem Res 51(1):140–146. https://doi.org/10.1021/ie201202b

    Article  CAS  Google Scholar 

  31. Sánchez S, Rodríguez MA, Ancheyta J (2005) Kinetic model for moderate hydrocracking of heavy oils. Ind Eng Chem Res 44(25):9409–9413. https://doi.org/10.1021/ie050202+

    Article  CAS  Google Scholar 

  32. Hart A, Greaves M, Wood J (2015) A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using-CAPRI. Chem Eng J 282:213–223. https://doi.org/10.1016/j.cej.2015.01.101

    Article  CAS  Google Scholar 

  33. Zhao L, Xu C, Gao S, Shen B (2010) Effects of concentration on the alkali-treatment of ZSM-5 zeolite: a study on dividing points. J Mater Sci 45(19):5406–5411. https://doi.org/10.1007/s10853-010-4593-2

    Article  CAS  Google Scholar 

  34. Asadi S, Vafi L, Karimzadeh R (2018) Catalytic cracking of propane over impregnated mesoporous ZSM-5: a strategy to change product distribution by sequential modification. Microporous Mesoporous Mater 255:253–260. https://doi.org/10.1016/j.micromeso.2017.07.018

    Article  CAS  Google Scholar 

  35. Zhou F, Gao Y, Wu G, Ma F, Liu C (2017) Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization. Microporous Mesoporous Mater 240:96–107. https://doi.org/10.1016/j.micromeso.2016.11.014

    Article  CAS  Google Scholar 

  36. Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A: Gen 470:115–122. https://doi.org/10.1016/j.apcata.2013.10.040

    Article  CAS  Google Scholar 

  37. Safari S, Khoshbin R, Karimzadeh R (2019) Beneficial use of ultrasound irradiation in synthesis of beta-clinoptilolite composite used in heavy oil upgrading process. RSC Adv 9(29):16797–16811. https://doi.org/10.1039/C9RA02173F

    Article  CAS  Google Scholar 

  38. Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. J Nat Gas Chem 20(3):237–242. https://doi.org/10.1016/S1003-9953(10)60184-3

    Article  CAS  Google Scholar 

  39. Oruji S, Khoshbin R, Karimzadeh R (2018) Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: the effect of irradiation time. Fuel Process Technol 176:283–295. https://doi.org/10.1016/j.fuproc.2018.03.035

    Article  CAS  Google Scholar 

  40. López A, de Marco I, Caballero BM, Adrados A, Laresgoiti MF (2011) Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste Manag 31(8):1852–1858. https://doi.org/10.1016/j.wasman.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Li W, Xu H, Chen Y (2004) A comparative study of non-oxidative pyrolysis and oxidative cracking of cyclohexane to light alkenes. Fuel Process Technol 86(2):151–167. https://doi.org/10.1016/j.fuproc.2004.01.002

    Article  CAS  Google Scholar 

  42. Liu X, Li W, Zhu H, Ge Q, Chen Y, Xu H (2004) Light alkenes preparation by the gas phase oxidative cracking or catalytic oxidative cracking of high hydrocarbons. Catal Lett 94(1–2):31–36

    Article  CAS  Google Scholar 

  43. Al-Amrousi FA, El-Naggar AY, Abdallah RI (2007) Catalytic oxidative cracking of heavy wax distillates, slack wax, and polyethylene wastes to yield liquid and gas fuels. Petrol Sci Technol 25(3):373–386. https://doi.org/10.1080/10916460500294390

    Article  CAS  Google Scholar 

  44. Sahu MK, Sinha ASK (2011) A two-step process for hydrogen production from vacuum residue. Int J Hydrogen Energy 36(2):1551–1559. https://doi.org/10.1016/j.ijhydene.2010.10.044

    Article  CAS  Google Scholar 

  45. Maruszewski P, Krzyzanowski S, Zatorski LW (1983) Influence of oxygen activation on the catalytic cracking of n-pentane on zeolites. React Kinet Catal Lett 22(3–4):429–433. https://doi.org/10.1007/BF02066217

    Article  CAS  Google Scholar 

  46. Yoshiki KS, Phillips CR (1985) Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca bitumen. Fuel 64(11):1591–1598. https://doi.org/10.1016/0016-2361(85)90377-1

    Article  CAS  Google Scholar 

  47. Liu X, Li W, Xu H, Chen Y (2004) Production of light alkenes with low CO2 emission from gas phase oxidative cracking (GOC) of hexane. React Kinet Catal Lett 81(2):203–209. https://doi.org/10.1023/B:REAC.0000019424.06619.28

    Article  CAS  Google Scholar 

  48. Al-Amrousi FA (1997) An unconventional cracking method for hydrocarbon compounds and their derivatives: 1.ss Liquefaction of polyolefins. Fuel 76(14):1451–1457. https://doi.org/10.1016/S0016-2361(97)00081-1

    Article  CAS  Google Scholar 

  49. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Meyers RA, McKelvy ML (eds) Encyclopedia of analytical chemistry. https://doi.org/10.1002/9780470027318.a5606

  50. Mamora DD (1995) New findings in low-temperature oxidation of crude oil. In: Paper presented at the SPE Asia Pacific oil and gas conference, Kuala Lumpur, Malaysia, 1 Jan 1995

  51. Aghaei E, Karimzadeh R, Godini HR, Gurlo A, Gorke O (2020) Improving the physicochemical properties of Y zeolite for catalytic cracking of heavy oil via sequential steam-alkali-acid treatments. Microporous Mesoporous Mater 294:109854. https://doi.org/10.1016/j.micromeso.2019.109854

    Article  CAS  Google Scholar 

  52. Xiong K, Lu C, Wang Z, Gao X (2015) Kinetic study of catalytic cracking of heavy oil over an in-situ crystallized FCC catalyst. Fuel 142:65–72. https://doi.org/10.1016/j.fuel.2014.10.072

    Article  CAS  Google Scholar 

  53. Boyadjian C, Lefferts L, Seshan K (2010) Catalytic oxidative cracking of hexane as a route to olefins. Appl Catal A: Gen 372(2):167–174. https://doi.org/10.1016/j.apcata.2009.10.030

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Karimzadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (RAR 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Khoshbin, R. & Karimzadeh, R. Catalytic upgrading of heavy oil over mesoporous HZSM-5 zeolite in the presence of atmospheric oxygen flow. Reac Kinet Mech Cat 129, 941–962 (2020). https://doi.org/10.1007/s11144-020-01731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01731-w

Keywords

Navigation