Skip to main content
Log in

Hierarchical Growth of CoO Nanoflower Thin Films Influencing the Electrocatalytic Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The 3D architecture of Co(II) oxide (CoO) having oxygen defects has been recognized as a highly functional characteristic towards efficient electrocatalysis of water. Herein, different surface structures of CoO in the form of chemically deposited films were fabricated via AACVD technique, directly over the transparent fluorine-doped tin oxide (FTO) electrodes just by varying the deposition times. The as-prepared films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). As the deposition time is varied, the surface structure of the CoO changes from nanoparticles that are formed just in 15 min to nanobuds at 30-min deposition, and finally to a homogeneously distributed dense population of nanoflowers in 45 min. The evolution of these structures was also accompanied by a preferential exposure of (111) facets and an increasing number of oxygen defects which resulted in an enhancement of electrocatalytic activity towards water oxidation. The CoO nanoflowers (CoO-NFs) with highest number of these active oxygen vacancies showed the best performance with an overpotential of 325 mV vs RHE for a current density of 10 mA/cm2 while having a Taefl slope of 98 mV/dec, a mass activity of 35.2 A/g, and the electrochemically active surface area (ECSA) of 1069 μF. However, more importantly, the current density for CoO-NF jumped sharply to the values above 200 mA/cm2 with potential less than 1.8 V vs RHE, thereby meeting the commercialization standards while still providing high stabilities of oxygen generation, current densities, and repeated cycling. Such a performance can be considered remarkable for a material fabricated via a rapid and facile synthetic route and is directly deposited on a low cost and relatively less conductive FTO substrate which can be attributed to the synergistic effect of the larger specific surface area of 3D structure and the high distribution of oxygen defects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 511, 6 (2012)

    Google Scholar 

  2. J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Science 1593, 345 (2014)

    Google Scholar 

  3. M. Huo, Z. Yang, C. Yang, Z. Gao, J. Qi, Z. Liang, K. Liu, H. Chen, H. Zheng, R. Cao, ChemCatChem 11, 1480–1486 (2019)

    Article  CAS  Google Scholar 

  4. Z. Liang, Z. Huang, H. Yuan, Z. Yang, C. Zhang, Y. Xu, W. Zhang, H. Zheng, R. Cao, Chem. Sci. 6961, 9 (2018)

    Google Scholar 

  5. T. Ling, D.-Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X.-W. Du, Z. Hu, M. Jaroniec, S.-Z. Qiao, Nat. Commun. 12876, 7 (2016)

    Google Scholar 

  6. Y. Zheng, Y. Jiao, S.Z. Qiao, Adv. Mater. 5372, 27 (2015)

    Google Scholar 

  7. W. Zhang, W. Lai, R. Cao, Chem. Rev. 3717, 117 (2017)

    Google Scholar 

  8. F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc. 7748, 140 (2018)

    Google Scholar 

  9. M.A. Ehsan, M.A. Aziz, A. Rehman, A.S. Hakeem, M.A.A. Qasem, O.W. Saadi, ECS J. Solid State Sci. P711, 7 (2018)

    Google Scholar 

  10. M. Ehsan, R. Naeem, V. McKee, A. Rehman, A. Hakeem, M. Mazhar, J. Mater. Sci. Mater. Electron. 1411, 30 (2018)

    Google Scholar 

  11. M. Ehsan, R. Naeem, A. Rehman, A. Hakeem, M. Mazhar, J. Mater. Sci. Mater. Electron. 13209, 29 (2018)

    Google Scholar 

  12. Y.Q. Gao, X.Y. Liu, G.W. Yang, Nanoscale 5015, 8 (2016)

    Google Scholar 

  13. Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, J. Mater. Chem. A 5069, 7 (2019)

    Google Scholar 

  14. P. Wang, F. Song, R. Amal, Y.H. Ng, X. Hu, ChemSusChem 472, 9 (2016)

    Google Scholar 

  15. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Angew. Chem. Int. 8670, 55 (2016)

    Google Scholar 

  16. M.A. Ehsan, T.A.N. Peiris, K.G.U. Wijayantha, H. Khaledi, H.N. Ming, M. Misran, Z. Arifin, M. Mazhar, Thin Solid Films 1, 540 (2013)

    Google Scholar 

  17. C. Long, Y. Liang, H. Jin, B. Huang, Y. Dai, ACS Appl. Energy Mater. 513, 2 (2019)

    Google Scholar 

  18. A. Jiang, N. Nidamanuri, C. Zhang, Z. Li, ACS Omega 10092, 3 (2018)

    Google Scholar 

  19. F. Wang, Y. Yu, X. Yin, P. Tian, X. Wang, J. Mater. Chem. A 9060, 5 (2017)

    Google Scholar 

  20. D. Guo, F. Chen, W. Zhang, R. Cao, Sci. Bull. 626, 62 (2017)

    Google Scholar 

  21. Y. Zhao, B. Sun, X. Huang, H. Liu, D. Su, K. Sun, G. Wang, J. Mater. Chem. A 5402, 3 (2015)

    Google Scholar 

  22. N.H. Chou, P.N. Ross, A.T. Bell, T.D. Tilley, ChemSusChem 1566, 4 (2011)

    Google Scholar 

  23. C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. 9351, 54 (2015)

    Google Scholar 

  24. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am, Chem. Soc. 2688, 137 (2015)

    Google Scholar 

  25. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 527, 7 (2008)

    Google Scholar 

  26. Y.P. Zhu, C. Guo, Y. Zheng, S.-Z. Qiao, Acc. Chem. Res. 915, 50 (2017)

    Google Scholar 

  27. B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen, Y. Chen, Q. Zhang, B. Doyle, X. Xiong, M. Liu, Nat. Commun. 14586, 8 (2017)

    Google Scholar 

  28. Y. Liang, Y. Yu, Y. Huang, Y. Shi, B. Zhang, J. Mater. Chem. A 1336, 5 (2017)

    Google Scholar 

  29. X. Ni, D. Li, Y. Zhang, H. Zheng, Chem. Lett. 908, 36 (2007)

    Google Scholar 

  30. H. Li, S. Liao, J. Phys. D 065004, 41 (2008)

    Google Scholar 

  31. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew. Chem. Int. 6290, 55 (2016)

    Google Scholar 

  32. Z. Yin, C. Zhu, C. Li, S. Zhang, X. Zhang, Y. Chen, Nanoscale 19129, 8 (2016)

    Google Scholar 

  33. X. Wang, F. Yuan, P. Hu, L. Yu, L. Bai, J. Phys. Chem. C 8773, 112 (2008)

    Google Scholar 

  34. F. Yu, F. Li, B. Zhang, H. Li, L. Sun, ACS Catal. 627, 5 (2015)

    Google Scholar 

  35. M.A. Ehsan, M.A. Aziz, A. Rehman, A.S. Hakeem, M.A.A. Qasem, S.H.A. Ahmad, J. Electrochem. Soc. B302, 165 (2018)

    Google Scholar 

  36. Y. Zhu, Q. Yang, H. Zheng, W. Yu, Y. Qian, Mater. Chem. Phys. 293, 91 (2005)

    Google Scholar 

  37. D. Wang, X. Ma, Y. Wang, L. Wang, Z. Wang, W. Zheng, X. He, J. Li, Q. Peng, Y. Li, Nano Res. 1, 3 (2010)

    Google Scholar 

  38. C. Peng, B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, J. Yang, ACS Nano 1074, 6 (2012)

    Google Scholar 

  39. J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo, S. Yang, Energy Environ. Sci. 1736, 11 (2018)

    Google Scholar 

  40. L. Liardet, X. Hu, ACS Catal. 644, 8 (2018)

    Google Scholar 

  41. G.M. Thorat, H.S. Jadhav, A. Roy, W.-J. Chung, J.G. Seo, ACS Sustain. Chem. Eng. 16255, 6 (2018)

    Google Scholar 

  42. H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin, L. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2858, 11 (2018)

    Google Scholar 

  43. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 13801, 5 (2015)

    Google Scholar 

  44. Z. Xing, H. Wu, L. Wu, X. Wang, H. Zhong, F. Li, J. Shi, D. Song, W. Xiao, C. Jiang, F. Ren, J. Mater. Chem. A 21167, 6 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the characterization facilities provided by CENT-KFUPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rehman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan, M.A., Hakeem, A.S. & Rehman, A. Hierarchical Growth of CoO Nanoflower Thin Films Influencing the Electrocatalytic Oxygen Evolution Reaction. Electrocatalysis 11, 282–291 (2020). https://doi.org/10.1007/s12678-020-00585-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00585-z

Keywords

Navigation