Skip to main content
Log in

Improved Electrical Properties of Layer Structured La2Ti1.96V0.04O7 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

La2Ti1.96V0.04O7 (LTVO) ceramics with Ti4+ ions partially substituted by V5+ ions at B sites show excellent electrical properties. The dopant V5+ ions do not result in collapse of the cell layered structure, but they lead to the enhanced distortions of BO6 oxygen octahedrons. Impedance spectroscopy reveals that a certain number of defects are formed due to the substitution of Ti4+ ions by V5+ ions. Meanwhile, the concentration of oxygen vacancies is decreased compared to pure La2Ti2O7 (LTO) ceramics. The direct current resistivity of LTVO ceramics obtained from alternating current (AC) impedance fitting at 600°C is 1.3 × 106 Ω cm, which is more than five times of that of the pure LTO at the same temperature (2.2 × 105 Ω cm). The substitution of Ti4+ ions by V5+ ions greatly enhances the piezoelectric coefficient, d33 = 4.8 pC/N. Therefore, the doping of V5+ ions in the B sites of LTO ceramics should be a good choice for enhancing their piezoelectric properties and resistivity at high temperature regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.X. Yan, H.P. Ning, Y.M. Kan, P.L. Wang, and M.J. Reece, J. Am. Ceram. Soc. 92–10, 2270 (2009).

    Article  Google Scholar 

  2. G. Chen, J. Chen, C.L. Fu, X.D. Peng, W. Cai, and X.L. Deng, Trans. Ind. Ceram. Soc. 73–4, 307 (2014).

    Article  Google Scholar 

  3. Z.M. Shao, S. Sebastien, P. Roussel, O. Mentre, F.P. Gheorghiu, L. Mitoseriu, and R. Desfeux, J. Solid State Chem. 183, 1652 (2010).

    Article  CAS  Google Scholar 

  4. N. Ishizawa, F. Marumo, and S. Iwai, Acta Cryst. B38, 368 (1982).

    Article  CAS  Google Scholar 

  5. A. Orum, K. Takatori, S. Hori, T. Ikeda, M. Yoshimura, and T. Tani, Jpn. J. Appl. Phys. 55, 08NB08-1 (2016).

    Article  Google Scholar 

  6. M. Scarrozza, A. Filippetti, and V. Fiorentini, PRL 109, 217202-1 (2012).

    Article  Google Scholar 

  7. X.S. Li, H.T. Cai, L.H. Ding, X.W. Dou, and W.F. Zhang, J. Alloys Compd. 541, 36 (2012).

    Article  CAS  Google Scholar 

  8. H. Cheng, Z.G. Lu, Y. Liu, H.H. Yang, Y.Y. Gu, W. Li, and Y.G. Tang, Rare Met. 30–6, 602 (2011).

    Article  Google Scholar 

  9. L.M. Jiang, Y.Y. Li, J. Xing, J.G. Wu, Q. Chen, H. Liu, D.Q. Xiao, and J.G. Zhu, Ceram. Int. 43, 2100 (2017).

    Article  CAS  Google Scholar 

  10. L.B. Gao, K. Tang, J.M. Xu, and Z.R. Xu, Mater. Des. 116, 109 (2017).

    Article  CAS  Google Scholar 

  11. K. Gebresellasie, J.C. Lewis, and J. Shirokoff, Energy Fuels 27, 2018 (2013).

    Article  CAS  Google Scholar 

  12. L.V. Saraf, P. Nachimuthu, M.H. Engelhard, and D.R. Baer, J. Sol-Gel. Sci. Technol. 53, 141 (2010).

    Article  CAS  Google Scholar 

  13. James R. Connolly, EPS.400-001, 1 (2009)

  14. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, and N. Lupu, J. Magn. Magn. Mater. 477, 9 (2019).

    Article  CAS  Google Scholar 

  15. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, and S.V. Trukhano, J. Alloys Compd. 791, 522 (2019).

    Article  CAS  Google Scholar 

  16. A. Ceylan, Mater. Res. Bull. 43, 1623 (2008).

    Article  CAS  Google Scholar 

  17. M. Hojamberdiev, A. Yamaguchi, K. Yubuta, S. Oishi, and K. Teshima, Inorg. Chem. 54, 3237 (2015).

    Article  CAS  Google Scholar 

  18. Z.P. Gao, H.X. Yan, H.P. Ning, R. Wilson, X.Y. Wei, B. Shi, H. Ye, and M.J. Reece, J. Eur. Ceram. Soc. 33, 1001 (2013).

    Article  CAS  Google Scholar 

  19. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, and S. Sinha, Ceram. Int. 41–6, 7713 (2015).

    Article  Google Scholar 

  20. Y.W. Liu, Y.P. Pu, Z.X. Sun, and Q. Jin, Mater. Res. Bull. 70, 195 (2015).

    Article  Google Scholar 

  21. S. Pandey, D. Kumar, O. Parkash, and L. Pandey, Integr. Ferroelectr. 183, 141 (2017).

    Article  CAS  Google Scholar 

  22. S. Nasri, M. Megdiche, and M. Gargouri, Ionics 21, 67 (2015).

    Article  CAS  Google Scholar 

  23. X.R. Xiong, R.M. Tian, X. Lin, D.W. Chu, and S. Li, RSC Adv. 5, 14735 (2015).

    Article  CAS  Google Scholar 

  24. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, and R. Szymczak, Eur. Phys. J. B 42, 51 (2004).

    Article  CAS  Google Scholar 

  25. R. Gerhardt, J. Phys. Chem. Solids 55–12, 1491 (1994).

    Article  Google Scholar 

  26. N. Zhang, Q.J. Li, S.G. Huang, Y. Yu, J. Zheng, C. Cheng, and C.C. Wang, J. Alloys Compd. 652, 1 (2015).

    Article  CAS  Google Scholar 

  27. Y.Y. Li, L.M. Jiang, C. Wu, Z.C. Liu, X.J. Zhao, Q. Chen, J. Xing, and J.G. Zhu, Ceram. Int. 45–10, 12742 (2019).

    Article  Google Scholar 

  28. N.S. Zhao, H.Q. Fan, X.H. Ren, J.W. Ma, J. Bao, Y.J. Guo, and Y.Y. Zhou, J. Eur. Ceram. Soc. 39, 4096 (2019).

    Article  CAS  Google Scholar 

  29. R.V. Pai, S.K. Mukerjee, and V. Venugopal, Solid State Ionics 187, 85 (2011).

    Article  CAS  Google Scholar 

  30. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, and D.K. Pradhan, J. Mater. Sci.: Mater. Electron. 29, 6966 (2018).

    CAS  Google Scholar 

  31. C.B. Long, H.Q. Fan, and P.R. Ren, Inorg. Chem. 52, 5045 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51932010), Sichuan Science and Technology Program (2018G20140) and the Fundamental Research Funds for Central Universities. I myself will also thank my friends Wenju Guan and Hanjiang Zou for waking me up every morning for months, so that I can complete this article successfully. This work is also supported by the China Scholarship Fund (201906240248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lee, T., Jiang, L. et al. Improved Electrical Properties of Layer Structured La2Ti1.96V0.04O7 Ceramics. J. Electron. Mater. 49, 2584–2595 (2020). https://doi.org/10.1007/s11664-020-07945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07945-x

Keywords

Navigation