Skip to main content

Advertisement

Log in

Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Differentiation of oligodendrocytes (OL) from progenitor cells (OPC) is the result of a unique program of gene expression, which is further regulated by the formation of topological domains of association with the nuclear lamina. In this study, we show that cultured OPC were characterized by progressively declining levels of endogenous Lamin B1 (LMNB1) during differentiation into OL. We then identify the genes dynamically associated to the nuclear lamina component LMNB1 during this transition, using a well established technique called DamID, which is based on the ability of a bacterially-derived deoxyadenosine methylase (Dam), to modify genomic regions in close proximity. We expressed a fusion protein containing Dam and LMNB1 in OPC (OPCLMNB1-Dam) and either kept them proliferating or differentiated them into OL (OLLMNB1-Dam) and identified genes that were dynamically associated to LMNB1 with differentiation. Importantly, we identified Lss, the gene encoding for lanosterol synthase, a key enzyme in cholesterol synthesis, as associated to the nuclear lamina in OLLMNB1-Dam. This finding could at least in part explain the lipid dysregulation previously reported for mouse models of ADLD characterized by persistent LMNB1 expression in oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954. https://doi.org/10.1016/j.cell.2011.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaret KS, Carroll JS (2011) Pioneer transcription factors : establishing competence for gene expression Parameters affecting transcription factor access to target sites in chromatin Initiating events in chromatin : pioneer factors bind first. Genes Dev. https://doi.org/10.1101/gad.176826.111.GENES

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mohn F, Schübeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136. https://doi.org/10.1016/j.tig.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. https://doi.org/10.3390/ijms17101712

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175–186. https://doi.org/10.1016/j.gde.2011.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell. https://doi.org/10.1016/j.molcel.2010.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dittmer T, Misteli T (2011) The lamin protein family. Genome Biol. https://doi.org/10.1186/gb-2011-12-5-222

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jung H-J, Nobumori C, Goulbourne CN et al (2013) Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci USA 110:E1923–E1932. https://doi.org/10.1073/pnas.1303916110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dechat T, Pfleghaar K, Sengupta K et al (2008) Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853. https://doi.org/10.1101/gad.1652708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonzalo S (2014) DNA Damage and Lamins. In: Schirmer EC, de las Heras JI (eds) Cancer biology and the nuclear envelope. Advances in experimental medicine and biology, vol 773. Springer, pp 377–399

  11. Butin-Israeli V, Adam SA, Jain N et al (2015) Role of lamin B1 in chromatin instability. Mol Cell Biol 35:884–898. https://doi.org/10.1128/mcb.01145-14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Andrés V, González JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187:945–957. https://doi.org/10.1083/jcb.200904124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Camozzi D, Capanni C, Cenni V, et al (2014) Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Nucleus 5(5):427–440

    Article  PubMed  PubMed Central  Google Scholar 

  14. Naetar N, Ferraioli S, Foisner R (2017) Lamins in the nuclear interior—life outside the lamina. J Cell Sci 130:2087–2096. https://doi.org/10.1242/jcs.203430

    Article  CAS  PubMed  Google Scholar 

  15. Swift J, Ivanovska IL, Buxboim A, et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science (80- ) 341:. https://doi.org/10.1126/science.1240104

    Article  PubMed  PubMed Central  Google Scholar 

  16. Swift J, Discher DE (2014) The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci 127:3005–3015. https://doi.org/10.1242/jcs.149203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lochs SJA, Kefalopoulou S, Kind J (2019) Lamina associated domains and gene regulation in development and cancer. Cells 8:271. https://doi.org/10.3390/cells8030271

    Article  CAS  PubMed Central  Google Scholar 

  18. Dechat T, Adam SA, Taimen P et al (2010) Nuclear lamins (review). Cold Spring Harb Perspect Biol 2:1–23. https://doi.org/10.1101/cshperspect.a000547

    Article  CAS  Google Scholar 

  19. Takamori Y, Hirahara Y, Wakabayashi T et al (2018) Differential expression of nuclear lamin subtypes in the neural cells of the adult rat cerebral cortex. IBRO Rep 5:99–109. https://doi.org/10.1016/j.ibror.2018.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coffeen CM (2000) Genetic localization of an autosomal dominant leukodystrophy mimicking chronic progressive multiple sclerosis to chromosome 5q31. Hum Mol Genet 9:787–793. https://doi.org/10.1093/hmg/9.5.787

    Article  CAS  PubMed  Google Scholar 

  21. Padiath QS, Saigoh K, Schiffmann R et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123. https://doi.org/10.1038/ng1872

    Article  CAS  PubMed  Google Scholar 

  22. Padiath QS (2016) Lamin B1 mediated demyelination: linking lamins, lipids and leukodystrophies. Nucleus 7:547–553. https://doi.org/10.1080/19491034.2016.1260799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin S-T, Fu Y-H (2009) miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2:178–188. https://doi.org/10.1242/dmm.001065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giorgio E, Robyr D, Spielmann M et al (2014) A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum Mol Genet 24:3143–3154. https://doi.org/10.1093/hmg/ddv065

    Article  CAS  Google Scholar 

  25. Rolyan H, Nmezi BC, Chen J et al (2015) Defects of lipid synthesis are linked to the age-dependent demyelination caused by Lamin B1 overexpression. J Neurosci 35:2002–12017. https://doi.org/10.1523/JNEUROSCI.1668-15.2015

    Article  CAS  Google Scholar 

  26. Heng MY, Lin ST, Verret L et al (2013) Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 123:2719–2729. https://doi.org/10.1172/JCI66737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steensel B Van, Henikoff S (2000) Steensel.Henikoff.DamID.NatBiotech.2000. 18

  28. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein - DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478. https://doi.org/10.1038/nprot.2007.148

    Article  CAS  PubMed  Google Scholar 

  29. Scaglione A, Patzig J, Liang J et al (2018) PRMT5-mediated regulation of developmental myelination. Nat Commun. https://doi.org/10.1038/s41467-018-04863-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Day N, Hemmaplardh A, Thurman RE et al (2007) Unsupervised segmentation of continuous genomic data. Bioinformatics 23:1424–1426. https://doi.org/10.1093/bioinformatics/btm096

    Article  CAS  PubMed  Google Scholar 

  32. Karolchik D (2003) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32:493D–496. https://doi.org/10.1093/nar/gkh103

    Article  CAS  Google Scholar 

  33. Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/jneurosci.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharma K, Schmitt S, Bergner CG et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831. https://doi.org/10.1038/nn.4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McKenzie AT, Wang M, Hauberg ME et al (2018) Brain cell type specific gene expression and co-expression network architectures. Sci Rep 8:1–19. https://doi.org/10.1038/s41598-018-27293-5

    Article  CAS  Google Scholar 

  36. Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-128

    Article  Google Scholar 

  37. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gorkin DU, Leung D, Ren B (2014) The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14:762–775. https://doi.org/10.1016/j.stem.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu YQ, Lin X, Liu CM et al (2001) Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Mol Genet Metab 72:343–350. https://doi.org/10.1006/mgme.2001.3160

    Article  CAS  PubMed  Google Scholar 

  40. Swiss VA, Nguyen T, Dugas J et al (2011) Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLoS ONE. https://doi.org/10.1371/journal.pone.0018088

    Article  PubMed  PubMed Central  Google Scholar 

  41. Van Den KR, Raymond Y, Ramaekers FCS et al (1997) A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 107:505–517

    Article  Google Scholar 

  42. Takamori Y, Tamura Y, Kataoka Y et al (2007) Differential expression of nuclear lamin, the major component of nuclear lamina, during neurogenesis in two germinal regions of adult rat brain. Eur J Neurosci 25:1653–1662. https://doi.org/10.1111/j.1460-9568.2007.05450.x

    Article  PubMed  Google Scholar 

  43. Giorgio E, Rolyan H, Kropp L et al (2013) Analysis of LMNB1 duplications in autosomal dominant leukodystrophy provides insights into duplication mechanisms and allele-specific expression. Hum Mutat 34:1160–1171. https://doi.org/10.1002/humu.22348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu Y, Casaccia P, Richard LuQ (2010) Shaping the oligodendrocyte identity by epigenetic control. Epigenetics 5:124–128. https://doi.org/10.4161/epi.5.2.11160

    Article  CAS  PubMed  Google Scholar 

  45. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science (80-) 330:779–782. https://doi.org/10.1126/science.1190927

    Article  CAS  Google Scholar 

  46. Gonzalez-Sandoval A, Gasser SM (2016) On TADs and LADs: spatial control over gene expression. Trends Genet 32:485–495. https://doi.org/10.1016/j.tig.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  47. Pickersgill H, Kalverda B, De Wit E et al (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014. https://doi.org/10.1038/ng1852

    Article  CAS  PubMed  Google Scholar 

  48. Towbin BD, González-Aguilera C, Sack R et al (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947. https://doi.org/10.1016/j.cell.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  49. Harr JC, Luperchio TR, Wong X et al (2015) Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol 208:33–52. https://doi.org/10.1083/jcb.201405110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harr JC, Gonzalez‐Sandoval A, Gasser SM (2016) Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 17:139–155. https://doi.org/10.15252/embr.201541809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Solovei I, Wang AS, Thanisch K et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598. https://doi.org/10.1016/j.cell.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  52. van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791. https://doi.org/10.1016/j.cell.2017.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meuleman W, Peric-Hupkes D, Kind J et al (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23:270–280. https://doi.org/10.1101/gr.141028.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yáñez-Cuna JO, van Steensel B (2017) Genome–nuclear lamina interactions: from cell populations to single cells. Curr Opin Genet Dev 43:67–72. https://doi.org/10.1016/j.gde.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  55. Poleshko A, Shah PP, Gupta M et al (2017) Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171:573–587.e14. https://doi.org/10.1016/j.cell.2017.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gruenbaum Y, Foisner R (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164. https://doi.org/10.1146/annurev-biochem-060614-034115

    Article  CAS  PubMed  Google Scholar 

  57. Worman HJ, Bonne G (2007) “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res 313:2121–2133. https://doi.org/10.1016/j.yexcr.2007.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dobrzynska A, Gonzalo S, Shanahan C, Askjaer P (2016) The nuclear lamina in health and disease. Nucleus 7:233–248. https://doi.org/10.1080/19491034.2016.1183848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hegele RA, Cao H, Liu DM et al (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79:383–389. https://doi.org/10.1086/505885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Damiano JA, Afawi Z, Bahlo M et al (2015) Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum Mol Genet 24:4483–4490. https://doi.org/10.1093/hmg/ddv171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Springer, Berlin

    Google Scholar 

  62. Lo Martire V, Alvente S, Bastianini S et al (2018) Mice overexpressing lamin B1 in oligodendrocytes recapitulate the age-dependent motor signs, but not the early autonomic cardiovascular dysfunction of autosomal-dominant leukodystrophy (ADLD). Exp Neurol 301:1–12. https://doi.org/10.1016/j.expneurol.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  63. Padiath QS (2019) Autosomal dominant leukodystrophy: a disease of the nuclear lamina. Front Cell Dev Biol 7:1–6. https://doi.org/10.3389/fcell.2019.00041

    Article  Google Scholar 

  64. Moyon S, Liang J, Casaccia P (2016) Epigenetics in NG2 glia cells. Brain Res 1638:183–198. https://doi.org/10.1016/j.brainres.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  65. Li H, He Y, Richardson WD, Casaccia P (2009) Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 19:479–485. https://doi.org/10.1016/j.conb.2009.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu J, Casaccia P (2010) Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 33:193–201. https://doi.org/10.1016/j.tins.2010.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hernandez M, Casaccia P (2015) Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage. Glia 63:1357–1375. https://doi.org/10.1002/glia.22818

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tsai E, Casaccia P (2019) Mechano-modulation of nuclear events regulating oligodendrocyte progenitor gene expression. Glia 67:1229–1239. https://doi.org/10.1002/glia.23595

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu J, Moyon S, Hernandez M, Casaccia P (2016) Epigenetic control of oligodendrocyte development: Adding new players to old keepers. Curr Opin Neurobiol 39:133–138. https://doi.org/10.1016/j.conb.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Bas van Steensel and Daan Peric-Hupkes for generous sharing of reagents and protocols and for providing invaluable suggestions. This work was supported by Grant R35 NS111604 to PC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Casaccia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Professor Vittorio Gallo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yattah, C., Hernandez, M., Huang, D. et al. Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation. Neurochem Res 45, 606–619 (2020). https://doi.org/10.1007/s11064-019-02941-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02941-y

Keywords

Navigation