Skip to main content

Advertisement

Log in

Precision medicine for ovarian clear cell carcinoma based on gene alterations

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Ovarian clear cell carcinoma (OCCC) is a histological subtype of epithelial ovarian carcinoma prevalent in Asians. No clear therapeutic selection based on molecular profile has been implemented for this disease. Oncogenic PIK3CA mutation, which activates the PIK3CA/AKT/mTOR signaling pathway, is a promising druggable alteration in OCCC. Recent studies by our group and others have identified the ARID1A mutation as another alteration linked to therapeutic selection based on synthetic lethality: deleterious ARID1A mutations, resulting in ARID1A deficiency, make OCCC cells sensitive to drugs targeting poly (ADP-ribose) polymerase and EZH2, as well as to glutathione inhibitors. In addition, we recently obtained evidence that ARID1A-deficient OCCC could benefit from gemcitabine treatment. Precision medicine based on gene alteration profiling might improve the prognosis of OCCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jang JYA, Yanaihara N, Pujade-Lauraine E et al (2017) Update on rare epithelial ovarian cancers: based on the rare ovarian tumors young investigator conference. J Gynecol Oncol 28(4):e54

    PubMed  PubMed Central  Google Scholar 

  2. Okamoto A, Glasspool RM, Mabuchi S et al (2014) Gynecologic Cancer InterGroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer 24(9 Suppl 3):S20–S25

    PubMed  Google Scholar 

  3. Kobel M, Kalloger SE, Huntsman DG et al (2010) Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol 29(3):203–211

    PubMed  Google Scholar 

  4. Yamagami W, Nagase S, Takahashi F et al (2017) Clinical statistics of gynecologic cancers in Japan. J Gynecol Oncol 28(2):e32

    PubMed  PubMed Central  Google Scholar 

  5. Bookman MA, Okamoto A, Stuart G et al (2017) Harmonising clinical trials within the Gynecologic Cancer InterGroup: consensus and unmet needs from the fifth ovarian cancer consensus conference. Ann Oncol 28(suppl_8):viii30–viii35

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mabuchi S, Sugiyama T, Kimura T (2016) Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives. J Gynecol Oncol 27(3):e31

    PubMed  PubMed Central  Google Scholar 

  7. Chandler RL, Damrauer JS, Raab JR et al (2015) Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun 6:6118

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeda T, Banno K, Okawa R et al (2016) ARID1A gene mutation in ovarian and endometrial cancers (review). Oncol Rep 35(2):607–613

    CAS  PubMed  Google Scholar 

  9. Maru Y, Tanaka N, Ohira M et al (2017) Identification of novel mutations in Japanese ovarian clear cell carcinoma patients using optimized targeted NGS for clinical diagnosis. Gynecol Oncol 144(2):377–383

    CAS  PubMed  Google Scholar 

  10. Kim SI, Lee JW, Lee M et al (2018) Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol 148(2):375–382

    CAS  PubMed  Google Scholar 

  11. Andre F, Ciruelos E, Rubovszky G et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    CAS  PubMed  Google Scholar 

  12. Enomoto T, Aoki D, Hattori K et al (2019) The first Japanese nationwide multicenter study of BRCA mutation testing in ovarian cancer: CHARacterizing the cross-sectionaL approach to Ovarian cancer geneTic TEsting of BRCA (CHARLOTTE). Int J Gynecol Cancer 29(6):1043–1049

    PubMed  Google Scholar 

  13. Zhang H, Liu T, Zhang Z et al (2016) Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166(3):755–765

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuo K-T, Mao T-L, Jones S et al (2009) Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174(5):1597–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shibuya Y, Tokunaga H, Saito S et al (2018) Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer 57(2):51–60

    CAS  PubMed  Google Scholar 

  16. McConechy MK, Anglesio MS, Kalloger SE et al (2011) Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol 223(5):567–573

    CAS  PubMed  Google Scholar 

  17. Newton R, Bowler KA, Burns EM et al (2016) The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. Eur J Med Chem 112:20–32

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Helming KC, Wang X, Wilson BG et al (2014) ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 20(3):251–254

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Itamochi H, Oishi T, Oumi N et al (2017) Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer 117(5):717–724

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Murakami R, Matsumura N, Brown JB et al (2017) Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. Am J Pathol 187(10):2246–2258

    CAS  PubMed  Google Scholar 

  21. Mavaddat N, Barrowdale D, Andrulis IL et al (2012) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21(1):134–147

    CAS  PubMed  Google Scholar 

  22. Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30(21):2654–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Uehara Y, Oda K, Ikeda Y et al (2015) Integrated copy number and expression analysis identifies profiles of whole-arm chromosomal alterations and subgroups with favorable outcome in ovarian clear cell carcinomas. PLoS ONE 10(6):e0128066

    PubMed  PubMed Central  Google Scholar 

  24. Okamoto A, Sehouli J, Yanaihara N et al (2015) Somatic copy number alterations associated with Japanese or endometriosis in ovarian clear cell adenocarcinoma. PLoS ONE 10(2):e0116977

    PubMed  PubMed Central  Google Scholar 

  25. Huang G, Krig S, Kowbel D et al (2005) ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction. Hum Mol Genet 14(21):3219–3225

    CAS  PubMed  Google Scholar 

  26. Yamashita Y, Akatsuka S, Shinjo K et al (2013) Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis. PLoS ONE 8(3):e57724

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen H, Fridley BL, Song H et al (2013) Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun 4:1628

    PubMed  Google Scholar 

  28. Yamaguchi K, Mandai M, Oura T et al (2010) Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 29(12):1741–1752

    CAS  PubMed  Google Scholar 

  29. Iida Y, Aoki K, Asakura T et al (2012) Hypoxia promotes glycogen synthesis and accumulation in human ovarian clear cell carcinoma. Int J Oncol 40(6):2122–2130

    CAS  PubMed  Google Scholar 

  30. Takenaka M, Kobel M, Garsed DW et al (2019) Survival following chemotherapy in ovarian clear cell carcinoma is not associated with pathological misclassification of tumor histotype. Clin Cancer Res 25(13):3962–3973

    PubMed  Google Scholar 

  31. Kato N, Sasou S, Motoyama T (2006) Expression of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors and endometriosis of the ovary. Mod Pathol 19(1):83–89

    CAS  PubMed  Google Scholar 

  32. Yamaguchi K, Mandai M, Toyokuni S et al (2008) Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res 14(1):32–40

    CAS  PubMed  Google Scholar 

  33. Lee S, Garner EI, Welch WR et al (2007) Over-expression of hypoxia-inducible factor 1 alpha in ovarian clear cell carcinoma. Gynecol Oncol 106(2):311–317

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hall M, Gourley C, McNeish I et al (2013) Targeted anti-vascular therapies for ovarian cancer: current evidence. Br J Cancer 108(2):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mabuchi S, Kawase C, Altomare DA et al (2010) Vascular endothelial growth factor is a promising therapeutic target for the treatment of clear cell carcinoma of the ovary. Mol Cancer Ther 9(8):2411–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyazawa M, Yasuda M, Fujita M et al (2009) Therapeutic strategy targeting the mTOR-HIF-1alpha-VEGF pathway in ovarian clear cell adenocarcinoma. Pathol Int 59(1):19–27

    CAS  PubMed  Google Scholar 

  37. Yanaihara N, Anglesio MS, Ochiai K et al (2012) Cytokine gene expression signature in ovarian clear cell carcinoma. Int J Oncol 41(3):1094–1100

    CAS  PubMed  Google Scholar 

  38. Yanaihara N, Hirata Y, Yamaguchi N et al (2016) Antitumor effects of interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R) signaling pathway inhibition in clear cell carcinoma of the ovary. Mol Carcinog 55(5):832–841

    CAS  PubMed  Google Scholar 

  39. Kawabata A, Yanaihara N, Nagata C et al (2017) Prognostic impact of interleukin-6 expression in stage I ovarian clear cell carcinoma. Gynecol Oncol 146(3):609–614

    CAS  PubMed  Google Scholar 

  40. Berg T, Nottrup TJ, Roed H (2019) Gemcitabine for recurrent ovarian cancer—a systematic review and meta-analysis. Gynecol Oncol 155:530–537

    CAS  PubMed  Google Scholar 

  41. Yoshino K, Enomoto T, Fujita M et al (2013) Salvage chemotherapy for recurrent or persistent clear cell carcinoma of the ovary: a single-institution experience for a series of 20 patients. Int J Clin Oncol 18(1):148–153

    CAS  PubMed  Google Scholar 

  42. Crotzer DR, Sun CC, Coleman RL et al (2007) Lack of effective systemic therapy for recurrent clear cell carcinoma of the ovary. Gynecol Oncol 105(2):404–408

    PubMed  Google Scholar 

  43. Ferrandina G, Legge F, Mey V et al (2007) A case of drug resistant clear cell ovarian cancer showing responsiveness to gemcitabine at first administration and at re-challenge. Cancer Chemother Pharmacol 60(3):459–461

    PubMed  Google Scholar 

  44. Kuroda T, Ogiwara H, Sasaki M et al (2019) Therapeutic preferability of gemcitabine for ARID1A-deficient ovarian clear cell carcinoma. Gynecol Oncol 155:489–498

    CAS  PubMed  Google Scholar 

  45. Kim KH, Kim W, Howard TP et al (2015) SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat Med 21(12):1491–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen J, Peng Y, Wei L et al (2015) ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov 5(7):752–767

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Williamson CT, Miller R, Pemberton HN et al (2016) ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun 7:13837

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller RE, Brough R, Bajrami I et al (2016) Synthetic lethal targeting of ARID1A-mutant ovarian clear cell tumors with dasatinib. Mol Cancer Ther 15(7):1472–1484

    CAS  PubMed  Google Scholar 

  49. Bitler BG, Wu S, Park PH et al (2017) ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol 19(8):962–973

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogiwara H, Takahashi K, Sasaki M et al (2019) Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell 35(2):177–190

    CAS  PubMed  Google Scholar 

  51. Kwan SY, Cheng X, Tsang YT et al (2016) Loss of ARID1A expression leads to sensitivity to ROS-inducing agent elesclomol in gynecologic cancer cells. Oncotarget 7(35):56933–56943

    PubMed  PubMed Central  Google Scholar 

  52. Vierkoetter KR, Ayabe AR, VanDrunen M et al (2014) Lynch Syndrome in patients with clear cell and endometrioid cancers of the ovary. Gynecol Oncol 135(1):81–84

    PubMed  PubMed Central  Google Scholar 

  53. Helder-Woolderink JM, Blok EA et al (2016) Ovarian cancer in Lynch syndrome; a systematic review. Eur J Cancer 55:65–73

    CAS  PubMed  Google Scholar 

  54. Shen J, Ju Z, Zhao W et al (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24(5):556–562

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamanishi J, Mandai M, Ikeda T et al (2015) Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33(34):4015–4022

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Cancer Center Research and Development Fund (30-A-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kohno.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, T., Kohno, T. Precision medicine for ovarian clear cell carcinoma based on gene alterations. Int J Clin Oncol 25, 419–424 (2020). https://doi.org/10.1007/s10147-020-01622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-020-01622-z

Keywords

Navigation