Skip to main content

Advertisement

Log in

Fluctuating pond water levels and aquatic insect persistence in a drought-prone Mediterranean-type climate

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In dry areas, natural and artificial ponds experience frequent water level fluctuation, affecting conditions for some aquatic and amphibiotic taxa. Water beetles, bugs, and dragonflies make up much of pond diversity, and are responsive to changes in environmental conditions. Using a drought-prone pondscape within the Greater Cape Floristic Region biodiversity hotspot, we determine (1) the relative extent to which species richness, abundance, and composition are affected by pond water level fluctuation, (2) the effects of environmental variables and vegetation characteristics relative to fluctuating water levels, and (3) make recommendations to improve pondscape conservation. We found that the degree of fluctuation had a significant effect on beetle species richness, but had no significant effect on the other focal taxa. Water temperature, pH, and conductivity, and vegetation cover and composition were drivers of aquatic insect species richness, abundances, and assemblage structures. Habitat heterogeneity supported rich aquatic insect assemblages. We recommend that a range of ponds with various degrees of water level fluctuation should be maintained, along with naturally diverse marginal vegetation. Such a dynamic pondscape can contribute greatly towards maintenance of local and regional aquatic insect diversity in drought-prone regions and should be considered as a main focus in conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Apinda-Legnouo, E. A., M. J. Samways & J. P. Simaika, 2014. Value of artificial ponds for aquatic beetle and bug conservation in the Cape Floristic Region biodiversity hotspot. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 522–535.

    Google Scholar 

  • Arribas, P., J. Velasco, P. Abellán, D. Sánchez-Fernández, C. Andújar, P. Calosi, A. Millán, I. Ribera & D. T. Bilton, 2012. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). Journal of Biogeography 39: 984–994.

    Google Scholar 

  • Bates, D. M. & D. Sarkar, 2007. lme4: Linear mixed-effects models using S4 classes. R package version 1.1-12.

  • Barton, K., 2019. MuMIn: Multi-model inference. R package version 1.42.1. Retrieved from https://CRAN.R-project.org/package=MuMIn.

  • Biggs, J., D. T. Bilton, P. Williams, P. Nicolet, L. Briggs, B. Eeles & M. Whitfield, 2004. Temporary ponds of eastern Poland: an initial assessment of their importance for nature conservation. Archive of Science 57: 73–83.

    Google Scholar 

  • Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793: 3–39.

    Google Scholar 

  • Bilton, D. T., L. C. McAbendroth, P. Nicolet, A. Bedford, S. D. Rundle, A. Foggo & P. M. Ramsay, 2008. Ecology and conservation status of temporary and fluctuating ponds in two areas of southern England. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 134–146.

    Google Scholar 

  • Bird, M. S., M. C. Mlambo, R. J. Wasserman, T. Dalu, A. J. Holland, J. A. Day, M. H. Villet, D. T. Bilton, H. M. Barber-James & L. Brendonck, 2019. Deeper knowledge of shallow waters: reviewing the invertebrate fauna of southern African temporary wetlands. Hydrobiologia 827: 89–121.

    Google Scholar 

  • Boersma, K. S., M. T. Bogan, B. A. Henrichs & D. A. Lytle, 2014. Invertebrate assemblages of pools in arid-land stream have high functional redundancy and are resistant to severe drying. Freshwater Biology 59: 491–501.

    Google Scholar 

  • Bond, N. R., P. S. Lake & A. H. Arthington, 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600: 3–16.

    Google Scholar 

  • Boothby, J., 1997. Pond conservation: towards a delineation of pondscape. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 127–132.

    Google Scholar 

  • Briggs, A., J. S. Pryke, M. J. Samways & D. Conlong, 2019. Macrophytes promote aquatic insect conservation in artificial ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1190–1201.

    Google Scholar 

  • Céréghino, R., A. Ruggiero, P. Marty & S. Angélibert, 2008. Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Hydrobiologia 597: 43–51.

    Google Scholar 

  • Chester, E. T. & B. J. Robson, 2013. Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biological Conservation 168: 64–75.

    Google Scholar 

  • Clark, T. E. & M. J. Samways, 1996. Dragonflies (Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. Journal of Applied Ecology 33: 1001–1012.

    Google Scholar 

  • da Rocha, F. C., E. M. de Andrade, F. B. Lopes, F. J. de Paula Filho, J. H. Costa Filho & M. D. da Silva, 2016. Physical-chemical determinant properties of biological communities in continental semi-arid waters. Environmental Monitoring and Assessment 188: 1–15.

    Google Scholar 

  • Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52.

    Google Scholar 

  • Dallas, H. F. & J. A. Day, 2007. Natural variation in macroinvertebrate assemblages and the development of a biological banding system for interpreting bioassessment data - a preliminary evaluation using data from upland sites in the south-western Cape, South Africa. Hydrobiologia 575: 231–244.

    CAS  Google Scholar 

  • Darwall, W., K. Smith, D. Allen, M. Seddon, G. M. Reid, V. Clausnitzer & V. J. Kalkman, 2009. Freshwater biodiversity: a hidden resource under threat. Wildlife in a changing world - An Analysis of the 2008 IUCN Red List of Threatened Species, 43.

  • Davies, B., J. Biggs, P. Williams, M. Whitfield, P. Nicolet, D. Sear, S. Bray & S. Maund, 2008. Comparative diversity of aquatic habitats in the European agricultural landscape. Agriculture, Ecosystems and Environment 125: 1–8.

    Google Scholar 

  • Davy-Bowker, J., 2002. A mark and recapture study of water beetles (Coleoptera: Dytiscidae) in a group of semi-permanent and temporary ponds. Aquatic Ecology 36: 435–446.

    Google Scholar 

  • De Marco, P., D. S. Nogueira, C. C. Correa, T. B. Vieira, K. D. Silva, N. S. Pinto, D. Bichsel, A. S. V. Hirota, R. R. S. Vieira, F. M. Carneiro, A. A. Bispo de Oliveira, P. Carvalho, R. P. Bastos, C. Ilg & B. Oertli, 2014. Patterns in the organization of Cerrado pond diversity in Brazilian pasture landscapes. Hydrobiologia 723: 87–101.

    Google Scholar 

  • Deacon, C., M. J. Samways & J. S. Pryke, 2018. Artificial reservoirs complement natural ponds to improve pondscape resilience in conservation corridors in a biodiversity hotspot. PloS One 13: e0204148.

    PubMed  PubMed Central  Google Scholar 

  • Deacon, C., M. J. Samways & J. S. Pryke, 2019. Aquatic insects decline in abundance and occupy low-quality habitats to survive hydrological droughts. Freshwater Biology 64: 1643–1654.

    Google Scholar 

  • Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.

    Google Scholar 

  • Dickens, C. W. & P. M. Graham, 2002. The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27: 1–10.

    Google Scholar 

  • Fairchild, G. W., J. Cruz, A. M. Faulds, A. E. Z. Short & J. F. Matta, 2003. Microhabitat and landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent ponds. Journal of North American Benthological Society 22: 224–240.

    Google Scholar 

  • Friday, L. E., 1987. The diversity of macro invertebrate and macrophyte communities in ponds. Freshwater Biology 18: 87–104.

    Google Scholar 

  • Furey, P. C., R. N. Nordin & A. Mazumder, 2006. Littoral benthic macroinvertebrates under contrasting drawdown in a reservoir and a natural lake. Journal of North American Benthological Society 25: 19–31.

    Google Scholar 

  • Grant, P. B. C. & M. J. Samways, 2007. Montane refugia for endemic and Red Listed dragonflies in the Cape Floristic Region biodiversity hotspot. Biodiversity and Conservation 16: 787–806.

    Google Scholar 

  • Griffiths, C., J. Day & M. Picker, 2015. Freshwater Life: A field guide to the plants and animals of southern Africa. Penguin Random House South Africa.

  • Gunderson, A. R., E. J. Armstrong & J. H. Stillman, 2016. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annual Review of Marine Science 8: 357–378.

    PubMed  Google Scholar 

  • Harabiš, F. & A. Dolný, 2012. Human altered ecosystems: suitable habitats as well as ecological traps for dragonflies (Odonata): the matter of scale. Journal of Insect Conservation 16: 121–130.

    Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of Australian freshwater biota. Hydrobiologia 210: 105–144.

    Google Scholar 

  • Hill, M. J., J. Biggs, I. Thornhill, B. A. Briers, D. G. Gledhill, J. C. White, P. J. Wood & C. Hassall, 2017a. Urban ponds as an aquatic biodiversity resource in modified landscapes. Global Change Biology 23: 986–999.

    PubMed  Google Scholar 

  • Hill, M. J., R. G. Death, K. L. Mathers, D. B. Ryves, J. C. White & P. J. Wood, 2017b. Macroinvertebrate community composition and diversity in ephemeral and perennial ponds on unregulated floodplain meadows in the UK. Hydrobiologia 793: 95–108.

    CAS  Google Scholar 

  • Hill, M. J., C. Hassall, B. Oertli, L. Fahrig, B. J. Robson, J. Biggs, M. J. Samways, N. Usio, N. Takamura, J. Krishnaswamy & P. J. Wood, 2018. New policy directions for global pond conservation. Conservation Letters 11: e12447.

    Google Scholar 

  • James, K. R., B. Cant & T. Ryan, 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of Botany 51: 703–713.

    CAS  Google Scholar 

  • Jeffries, M., 2005. Small ponds and big landscapes: the challenge of invertebrate spatial and temporal dynamics for European pond conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 541–547.

    Google Scholar 

  • Lytle, D. A., 2015. Chapter 37: Order Hemiptera. In: Thorp, J. H & D. C. Rogers, editors. Thorp and Covich’s freshwater invertebrates: Ecology and general biology. Amsterdam: Elsevier, pp. 1953-1979.

  • Manning, J. & P. Goldblatt, 2012. Plants of the Greater Cape Floristic Region 1: the Core. Cape flora, Strelitzia 29. South African National Biodiversity Institute, Pretoria South Africa.

  • McCauley, S. J., 2006. The effects of dispersal and recruitment limitation on community structure of odonates in artificial ponds. Ecography 29: 585–595.

    Google Scholar 

  • Mosley, L. M., 2015. Drought impacts on the water quality of freshwater systems: review and integration. Earth-Science Reviews 140: 203–214.

    CAS  Google Scholar 

  • Mosscrop, L. E., A. M. Paterson, A. M. DeSellas, J. Kurek, R. Weeber & J. P. Smol, 2015. Long-term stability of cladoceran assemblages in small, shallow, Canadian Shield lakes experiencing marked calcium declines. Aquatic Sciences 77: 547–561.

    Google Scholar 

  • Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J. B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.

    Google Scholar 

  • Oertli, B., N. Indermuehle, S. Angélibert, H. Hinden & A. Stoll, 2008. Macroinvertebrate assemblages in 25 high alpine ponds of the Swiss National Park (Cirque of Macun) and relation to environmental variables. Hydrobiologia 597: 29–41.

    Google Scholar 

  • Olds, B. P., B. C. Peterson, K. D. Koupal, K. M. Farnsworth-Hoback, C. W. Schoenebeck & W. W. Hoback, 2011. Water quality parameters of a Nebraska reservoir differ between drought and normal conditions. Lake and Reservoir Management 27: 229–234.

    CAS  Google Scholar 

  • Osborn, R. & M. J. Samways, 1996. Determinants of adult dragonfly assemblage patterns at new ponds in South Africa. Odonatologica 25: 49–58.

    Google Scholar 

  • Pallarés, S., J. Velasco, A. Millán, D. T. Bilton & P. Arribas, 2016. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences? PeerJ 4: e2382.

    PubMed  PubMed Central  Google Scholar 

  • Pallarés, S., M. Botella-Cruz, P. Arribas, A. Millán & J. Velasco, 2017. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. Journal of Experimental Biology 220: 1277–1286.

    PubMed  Google Scholar 

  • Pan, B.-Z., H.-Z. Wang, M. T. Pusch & H.-J. Wang, 2015. Macroinvertebrate responses to regime shifts caused by eutrophication in subtropical shallow lakes. Freshwater Science 34: 942–952.

    Google Scholar 

  • Polhemus, J. T., 2008. Aquatic and semiaquatic Hemiptera. In: Merrit, R.W., K.W. Cummins and M.B., editors. An introduction to the aquatic insects of North America. Dubuque: Kendall/Hunt Publishing Copp, pp. 385-423.

  • R Development Core Team., 2013. R Development Core Team. Austria, Vienna.

  • Raebel, E. M., T. Merckx, R. E. Feber, P. Riordan, D. W. Macdonald & D. J. Thompson, 2012a. Identifying high-quality pond habitats for Odonata in lowland England: implications for agri-environment schemes. Insect Conservation and Biodiversity 5: 422–432.

    Google Scholar 

  • Raebel, E. M., T. Merckx, R. E. Feber, P. Riordan, D. W. Macdonald & D. J. Thompson, 2012b. Multi-scale effects of farmland management on dragonfly and damselfly assemblages of farmland ponds. Agriculture, Ecosystems and Environment 161: 80–87.

    Google Scholar 

  • Rosset, V., A. Lehmann & B. Oertli, 2010. Warmer and richer? Predicting the impact of climate warming on species richness in small temperate water bodies. Global Change Biology 16: 2376–2387.

    Google Scholar 

  • Samways, M. J., 1989. Farm dams as nature reserves for dragonflies (Odonata) at various altitudes in the Natal Drakensberg Mountains, South Africa. Biological Conservation 48: 181–187.

    Google Scholar 

  • Samways M. J. & J. P. Simaika, 2016. Manual of freshwater assessment for South Africa: Dragonfly biotic index. Suricata 2. Pretoria: South African National Biodiversity Institute.

  • Samways, M. J., R. Osborn & I. Van Heerden, 1996. Distribution of benthic invertebrates at different depths in a shallow reservoir in the KwaZulu-Natal Midlands. Koedoe 39: 69–76.

    Google Scholar 

  • Schindler, M., C. Fesl & A. Chovanec, 2003. Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach. Hydrobiologia 497: 169–180.

    Google Scholar 

  • Simaika, J. P. & M. J. Samways, 2011. Comparative assessment of indices of freshwater habitat conditions using different invertebrate taxon sets. Ecological Indicators 11: 370–378.

    CAS  Google Scholar 

  • Simaika, J. P., M. J. Samways & P. P. Frenzel, 2016. Artificial ponds increase local dragonfly diversity in a global biodiversity hotspot. Biodiversity and Conservation 25: 1921–1935.

    Google Scholar 

  • Stals, R. & I. J. de Moor, 2007. Coleoptera. Guides to the freshwater invertebrates of Southern Africa. Water Research Commission, Pretoria: 1–263.

    Google Scholar 

  • Suhling, F., G. Sahlén, J. Kasperski & D. Gaedecke, 2005. Behavioral and life history traits in temporary and perennial waters: comparisons among three pairs of sibling dragonfly species. Oikos 108: 609–617.

    Google Scholar 

  • Suhling, F., I. Suhling & O. Richter, 2015. Temperature response of growth of larval dragonflies – An overview. International Journal of Odonatology 18: 15–30.

    Google Scholar 

  • Trenberth, K. E., A. Dai, G. Van Der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa & J. Sheffield, 2014. Global warming and changes in drought. Nature Climate Change 4: 17.

    Google Scholar 

  • Verberk, W. C. E. P., G.-J. A. van Duinen, T. M. J. Peeters & H. Esselink, 2001. Importance of variation in water-types for water beetle fauna (Coleoptera) in Korenburgerveen, a bog remnant in the Netherlands. Proceedings of the Section Experimental and Applied Entomology 12: 121–128.

    Google Scholar 

  • Wang, Y. I., U. Naumann, S. T. Wright & D. I. Warton, 2012. mvabund – an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution 3: 471–474.

    Google Scholar 

  • Williams, P., J. Biggs, A. Crowe, J. Murphy, P. Nicolet, A. Meatherby & M. Dunbar, 2010. Countryside survey report from 2007, Technical report No 7/07. Lancaster, UK, Pond Conservation and NERC/Centre for Ecology and Hydrology.

    Google Scholar 

  • Winter, J. G., K. M. Somers, P. J. Dillon, C. Paterson & R. A. Reid, 2002. Impacts of golf courses on macroinvertebrate community structure in Precambrian Shield streams. Journal of Environmental Quality 31: 2015–2025.

    CAS  PubMed  Google Scholar 

  • Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society B 73: 3–36.

    Google Scholar 

  • Yee, D. A., & S. Kehl, 2015. Chapter 39: Order Coleoptera. In: Thorp, J. H & D. C. Rogers, editors. Thorp and Covich’s freshwater invertebrates: Ecology and general biology. Amsterdam: Elsevier, pp. 2056–2154.

Download references

Acknowledgements

Special thanks to G. Leckie at Erinvale Golf Estate, S. Reece and J. West at Lourensford Wine Estate, and J. van Rensburg at Vergelegen Wine Estate for granting access to the study sites.

Funding

This study was funded by Mondi Group. The funder was not involved in the design of the study, data analysis, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charl Deacon.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 114 kb)

Supplementary material 2 (PDF 1413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jooste, M.L., Samways, M.J. & Deacon, C. Fluctuating pond water levels and aquatic insect persistence in a drought-prone Mediterranean-type climate. Hydrobiologia 847, 1315–1326 (2020). https://doi.org/10.1007/s10750-020-04186-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04186-1

Keywords

Navigation