Skip to main content
Log in

Global patterns of reproductive and cytotype diversity in an invasive clonal plant

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The reproductive systems of invasive species play a key role in determining their geographical distributions. Oxalis pes-caprae is a clonal, polyploid, heterostylous, plant native to South Africa, but now invasive in all major Mediterranean climatic regions. Here, we extend earlier surveys in the Western Mediterranean basin of floral morph ratios, reproductive traits and ploidy level to include populations from South Africa and introduced regions of Australia, California and Chile. We sampled a total of 104 populations, 33 in South Africa, 29 in Australia, 27 in California and 15 in Chile and collected data on floral morph representation (trimorphic, dimorphic, monomorphic), flower size, fruit set, and ploidy level using flow cytometry. There were significant differences among regions in floral morph structure of populations, reproductive traits and ploidy level. Populations in South Africa were exclusively tristylous and largely tetraploid (4x); Australian populations were mostly pentaploid (5x, 65.5%), comprised exclusively of the short-styled morph, with the remaining populations either dimorphic or trimorphic. Populations in California and Chile were comprised exclusively of the 5x short-styled morph. Fruit set varied dramatically among populations with no fruit produced in 5x populations. Our study demonstrates striking geographical variation among regions in reproductive systems ranging from a mixture of sexual and clonal reproduction in the native range to exclusively clonal propagation in some introduced regions. This variation is likely to have important consequences for local adaptation and should be considered in future management decisions of invasive populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ågren J, Ericson L (1996) Population structure and morph-specific fitness differences in tristylous Lythrum salicaria. Evolution 50:126–136

    Article  PubMed  Google Scholar 

  • Albrecht M, Ramis MR, Traveset A (2016) Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biol Inv 18:1801–1812

    Article  Google Scholar 

  • Amsellem L, Chevallier MH, Hossaert-McKey M (2001) Ploidy level of the invasive weed Rubus alceifolius (Rosaceae) in its native range and in areas of introduction. Plant Syst Evol 228:171–179

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–172

    Google Scholar 

  • Balogh CM, Barrett SCH (2016) Stochastic processes during invasion: the influence of population size on style-morph frequency variation in Lythrum salicaria (purple loosestrife). Int J Plant Sci 177:409–418

    Article  Google Scholar 

  • Barrett SCH (1977) Tristyly in Eichhornia crassipes (Water Hyacinth). Biotropica 9:230–238

    Article  Google Scholar 

  • Barrett SCH (1980) Sexual reproduction in Eichhornia crassipes (Water Hyacinth). II. Seed production in natural populations. J Appl Ecol 17:113–124

    Article  Google Scholar 

  • Barrett SCH (1993) The evolutionary biology of tristyly. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 283–326

    Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Gen 3:274–284

    Article  CAS  Google Scholar 

  • Barrett SCH (2015) The influences of clonality on plant sexual reproduction. Proc Natl Acad Sci USA 112:8859–8866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett SCH (2019) ‘A most complex marriage arrangement’: recent advances on heterostyly and unresolved questions. New Phytol 224:1051–1067

    Article  PubMed  Google Scholar 

  • Barrett SCH, Arroyo MTK (2012) Variation in floral morph ratios in tristylous Oxalis squamata (Oxalidaeae). Botany 90:1180–1185

    Article  Google Scholar 

  • Barrett SCH, Husband BC (1990) Variation in outcrossing rates in Eichhornia paniculata: the role of demographic and reproductive factors. Plant Species Biol 5:41–56

    Article  Google Scholar 

  • Bolker BM, Brooks ME, ClarkCJ Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trend Ecol Evol 24:127–135

    Article  Google Scholar 

  • Castro S, Loureiro J, Santos C, Ater M, Ayensa G, Navarro L (2007) Distribution of flower morphs, ploidy level and sexual reproduction of the invasive weed Oxalis pes-caprae in the western area of the Mediterranean region. Ann Bot 99:507–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro S, Ferrero V, Costa J, Sousa AJ, Navarro L, Loureiro J (2013) Reproductive strategy of the invasive Oxalis pes-caprae: distribution patterns of flower morphs, ploidy levels and sexual reproduction. Biol Inv 15:1863–1875

    Article  Google Scholar 

  • Castro S, Castro M, Ferrero V, Costa J, Tavares D, Navarro L, Loureiro J (2016) Invasion fosters change: independent evolutionary shifts in reproductive traits after Oxalis pes-caprae L. introduction. Front Plant Sci 7:874

    PubMed  PubMed Central  Google Scholar 

  • Costa J, Ferrero V, Loureiro J, Castro M, Navarro L, Castro S (2014) Sexual reproduction in the invasive pentaploid short-styled Oxalis pes-caprae allows the production of viable offspring. Plant Biol 16:208–214

    Article  CAS  PubMed  Google Scholar 

  • Costa J, Ferrero V, Castro M, Jorge A, Afonso A, Loureiro J, Castro S (2016) Pollen flow between flowers of the same morph in invasive populations of Oxalis pes-caprae L. in the Western Mediterranean region. Plant Biosyst 150:923–932

    Article  Google Scholar 

  • Costa J, Ferrero V, Castro M, Loureiro J, Navarro L, Castro S (2017) Variation in the incompatibility reactions in tristylous Oxalis pes-caprae: large-scale screening in South African native and Mediterranean basin invasive populations. Perspect Plant Ecol Evol Syst 24:25–36

    Article  Google Scholar 

  • Crosby AW (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge

    Google Scholar 

  • D’Austria S (1884) Die Balearen-Menorca, vol II (Translated to Spanish in 1982). Ed. Sa Nostra, Palma de Mallorca

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of 3 DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Eckert CG, Barrett SCH (1995) Style morph ratios in tristylous Decodon verticillatus (Lythraceae): selection vs. historical contingency. Ecology 76:1051–1066

    Article  Google Scholar 

  • Ferrero V, Castro S, Costa J, Acuña P, Navarro L, Loureiro J (2013) Effect of invader removal: pollinators stay but some native plants miss their new friend. Biol Inv 15:2347–2358

    Article  Google Scholar 

  • Ferrero V, Barrett SCH, Castro S, Caldeirinha P, Navarro L, Loureiro J, Rodríguez-Echeverría S (2015) Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Mol Ecol 24:2143–2155

    Article  PubMed  Google Scholar 

  • Figueroa JA, Castro SA, Marquet PA, Jaksic FM (2004) Exotic plant invasions to the Mediterranean region of Chile: causes, history and impacts. Rev Chil Hist Nat 77:465–483

    Google Scholar 

  • Fisher RA (1941) The theoretical consequences of polyploid inheritance for the mid style form of Lythrum salicaria. Ann Eugen 11:31–38

    Article  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gimeno I, Vilà M, Hulme PE (2006) Are islands more susceptible to plant invasion than continents? A test using Oxalis pes-caprae L. in the Western Mediterranean. J Biogeogr 33:1559–1565

    Article  Google Scholar 

  • González-Moreno P, Diez JM, Richardson DM, Vilà M (2015) Niche shifts in invasive species. Glob Ecol Biogeogr 24:360–370

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Henslow G (1891) On the northern distribution of Oxalis cernua Thunb. In: Proceedings of the Royal Society of London (Session 1890-1891), pp 31–36

  • Husband BC, Barrett SCH (1992) Genetic drift and the maintenance of the style length polymorphism in tristylous populations of Eichhornia paniculata (Pontederiaceae). Heredity 69:440–449

    Article  Google Scholar 

  • Kliber A, Eckert CG (2005) Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59:1900–1913

    CAS  PubMed  Google Scholar 

  • Krejčíková J, Sudová R, Oberlander KC, Dreyer LL, Suda J (2013) Cytogeography of Oxalis pes-caprae in its native range: where are the pentaploids? Biol Inv 15:1189–1194

    Article  Google Scholar 

  • Kruger FJ, Breytenbach GJ, Macdonald IAW, Richardson DM (1989) The characteristics of invaded mediterranean-climate regions. In: Drake J, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M (eds) Biological invasions: a global synthesis. Wiley, New York, pp 181–213

    Google Scholar 

  • Kubátová B, Trávníček P, Bastlová D, Čurn V, Jarolímová V, Suda J (2008) DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. J Biogeogr 35:167–176

    Google Scholar 

  • Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S (2003) Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Syst Evol 243:59–72

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Lewontin RC (1965) Selection for colonizing ability. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, London, pp 77–91

    Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthei O (1995) Manual de las malezas que crecen en Chile. Alfabeta Impresores, Santiago de Chile

    Google Scholar 

  • Michael P (1964) The identity and origin of varieties of Oxalis pes-caprae L. naturalized in Australia. Trans R Soc S Aust 88:167–173

    Google Scholar 

  • Nishihiro J, Washitani I, Thomson JD, Thomson BA (2000) Patterns and consequences of stigma height variation in a natural population of a distylous plant, Primula sieboldii. Funct Ecol 14:502–512

    Article  Google Scholar 

  • Oberlander KC, Emshwiller E, Bellstedt DU, Dreyer LL (2009) A model of bulb evolution in the eudicot genus Oxalis L. Mol Phylogen Evol 51:54–63

    Article  CAS  Google Scholar 

  • Ornduff R (1972) The breakdown of trimorphic incompatibility in Oxalis section Corniculatae. Evolution 26:52–65

    Article  PubMed  Google Scholar 

  • Ornduff R (1986) The origin of weediness in Oxalis pes-caprae. Am J Bot 73:779–780

    Article  Google Scholar 

  • Ornduff R (1987) Reproductive systems and chromosome races of Oxalis pes-caprae L. and their bearing on the genesis of a noxious weed. Ann Miss Bot Gard 74:79–84

    Article  Google Scholar 

  • Papini A, Signorini MA, Foggi B, Della Giovampaola E, Ongaro L, Vivona L, Santosuosso U, Tani C, Bruschi P (2017) History vs. legend: retracing invasion and spread of Oxalis pes-caprae L. in Europe and the Mediterranean area. PLoS ONE 12:e0190237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pignatti S (1982) Oxalis pes-caprae L. In: Pignatti S (ed) Flora d’Italia, vol II. Edagricole, Bologna, p 3

    Google Scholar 

  • Pütz N (1994) Vegetative spreading of Oxalis pes-caprae (Oxalidaceae). Plant Syst Evol 191:57–67

    Article  Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. R version 3.3.2. http://www.R-project.org/

  • Rappa F (1911) Osservazioni sull’Oxalis cernua. Bollettino reale orto botanico e giardino coloniale di Palermo 10:142–185

    Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Rottenberg A, Parker JS (2004) Asexual populations of the invasive weed Oxalis pes-caprae are genetically variable. Proc R Soc B 271:S206–S208

    Article  PubMed  PubMed Central  Google Scholar 

  • Sala A, Verdaguer D, Vilà M (2007) Sensitivity of the invasive geophyte Oxalis pes-caprae to nutrient availability and competition. Ann Bot 99:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter TM (1944) The genus Oxalis in South Africa: a taxonomic revision. J S Afr Bot Suppl 1:1–355

    Google Scholar 

  • Sánchez JM, Ferrero V, Navarro L (2013) Quantifying reciprocity in distylous and tristylous plant populations. Plant Biol 15:616–620

    Article  PubMed  Google Scholar 

  • Schlaepfer DR, Edwards PJ, Semple JC, Billeter R (2008) Cytogeography of Solidago gigantea (Asteraceae) and its invasive ploidy level. J Biogeogr 35:2119–2127

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman and Company, New York, p 887

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommier S, Caruana Gatto A (1915) Flora melitensis nova. Stabilimento Pellas, Firenze

    Google Scholar 

  • Symon DE (1961) The species of Oxalis established in South Australia. Trans R Soc S Aust 84:71–77

    Google Scholar 

  • Tavares D, Loureiro J, Martins A, Castro M, Roiloa Castro S (2019) Genetically based phenotypic differentiation between native and introduced tetraploids of Oxalis pes-caprae. Biol Inv 21:229–243

    Article  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, Müller-Schärer H (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377

    Article  PubMed  Google Scholar 

  • Weller SG, Sakai AK, Gray T, Weber JJ, Tsyuslo OV, Domínguez CA, Fornoni J, Molina-Freaner FE (2016) Variation in heterostylous breeding systems in neighbouring populations of Oxalis alpina (Oxalidaceae). Plant Biol 18:104–110

    Article  CAS  PubMed  Google Scholar 

  • Young D (1968) Oxalis L. In: Tutin T, Heywood V, Burges N et al (eds) Flora Europaea, vol 2. Cambridge University Press, Cambridge, p 193

    Google Scholar 

Download references

Acknowledgements

The authors thank the Western Cape Nature Conservation Board and Department of Environment and Nature Conservation, Northern Cape, and State Governments in Australia for providing authorizations to collect and undertake scientific research. The authors also thank Joana Costa for help with sampling. This research was supported by FEDER funds through the COMPETE Program and by Portuguese Foundation for Science and Technology (FCT) funds in the ambit of the project PTDC/BIA-BIC/110824/2009, CRUP Acções Integradas Luso-Espanholas 2010 with the project E10/10, MCI-Programa de Internacionalización de la ICD (PT2009-0068) of the Spanish DGICYT (CGL2009-10466 and CGL2013-45941), the Xunta de Galicia (INCITE09-3103009PR, CITACA and R2014/036), the Percy Sladen Memorial Fund (2014 and 2015 calls) and the British Ecological Society (BES Small Research Grant 5355/6399). FCT also supported the work of SC (BPD/41200/2007, Starting Grant IF/01267/2013) and VF (SFRH/BPD/108707/2015). SCHB was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Ferrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, V., Navarro, L., Castro, S. et al. Global patterns of reproductive and cytotype diversity in an invasive clonal plant. Biol Invasions 22, 1691–1703 (2020). https://doi.org/10.1007/s10530-020-02213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-020-02213-9

Keywords

Navigation