Skip to main content
Log in

Fungi from the extremes of life: an untapped treasure for bioactive compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

More than 80% of the Earth surface is consisted of hostile and harsh environments, classified as extreme from an anthropogenic perspective. Microorganisms with acclimatized nature dominate these extreme ecosystems of the biosphere. Survivals in such environments initiate an inductive force leading to the production of noteworthy metabolites having peculiar biochemistry. Recent investigations on extremophilic fungi for unprecedented bioactive compounds emphasize their remarkable potential as sources of new therapeutics. The present review covers the literature published in the last 15 years and highlights the biological activities and structure of compounds isolated from the extremophilic fungi. The compounds are grouped based on their biological functions such as cytotoxicity, lipid-lowering ability, and antimicrobial, antioxidant, nematocidal, anti-inflammatory, anti-malarial, and antifouling activities. A total of 155 compounds isolated from 25 Penicillium species, 16 Aspergillus species, and 23 other species are presented, which include 105 new and 50 known bioactive compounds. Out of these, 77 have known cytotoxic activity and 46 are antimicrobial in nature, while there are 32 other compounds with different activities including nematocidal, anti-allergic, antioxidant, and anti-inflammatory.

Key Points

A broad compilation of bioactive compounds from extremophilic fungi.

Classification of bioactive compounds based on their biological functions.

Production of cytotoxic compounds is common among all kind of extremophilic fungi.

Bioactive compounds have no direct role in adaptation process of extremophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali I, Siwarungson N, Punnapayak H, Lotrakul P, Prasongsuk S, Bankeeree W, Rakshit SK (2014) Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak J Bot 46:983–988

    Google Scholar 

  • Bashyal BP, Wijeratne EK, Faeth SH, Gunatilaka AL (2005) Globosumones A− C, cytotoxic orsellinic acid esters from the Sonoran desert endophytic fungus Chaetomium globosum. J Nat Prod 68(5):724–728

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibio 58(1):1

    Article  CAS  Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32(2):116–211

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp B, Keyzers RA, Munro MH, Prinsep MR (2016) Marine natural products

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2(1):43–50

    Article  PubMed  Google Scholar 

  • Chen Y-X, Xu M-Y, Li H-J, Zeng K-J, Ma W-Z, Tian G-B, Xu J, Yang D-P, Lan W-J (2017) Diverse secondary metabolites from the marine-derived fungus Dichotomomyces cejpii F31–1. Mar Drugs 15(11):339

    Article  PubMed Central  CAS  Google Scholar 

  • Chu Y-S, Niu X-M, Wang Y-L, Guo J-P, Pan W-Z, Huang X-W, Zhang K-Q (2010) Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12(19):4356–4359

    Article  CAS  PubMed  Google Scholar 

  • Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Physiology and biochemistry of extremophiles. American Society of Microbiology, pp 165–179

  • Daletos G, Ebrahim W, Ancheeva E, El-Neketi M, Song W, Lin W, Proksch P (2018) Deep-sea-derived fungi ̶ a new source of novel bioactive compounds? Curr Med Chem 25(2):186–207

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibio 58(2):141

    Article  CAS  Google Scholar 

  • de Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19(1):31–37. https://doi.org/10.1007/s00792-014-0707-0

    Article  PubMed  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11(1):1–7

    Article  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2017) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8

  • Dhakar K, Sharma A, Pandey A (2014) Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World J Microbiol Biotechnol 30(4):1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Dumorne K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27(4):649–659

    Article  CAS  PubMed  Google Scholar 

  • Ebada SS, Fischer T, Hamacher A, Du F-Y, Roth YO, Kassack MU, Wang B-G, Roth EH (2014) Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat Prod Res 28(11):776–781

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Etoh T, Kim YP, Tanaka H, Hayashi M (2013) Anti-inflammatory effect of berkeleyacetal C through the inhibition of interleukin-1 receptor-associated kinase-4 activity. Eur J Pharmacol 698(1–3):435–443

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Wang Y, Liu P, Fu P, Zhu T, Wang W, Zhu W (2013) Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J Nat Prod 76(7):1328–1336

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int. J. Syst. Evol. Microbiol. 56(6):1427–1437

    CAS  Google Scholar 

  • Giddings L-A, Newman DJ (2015) Bioactive compounds from terrestrial extremophiles. In: Bioactive compounds from terrestrial extremophiles. Springer, pp 1–75

  • Gocheva YG, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110(11):1347–1354

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, Uršič V, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, pp 397–423

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113(11):1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Guo J-P, Zhu C-Y, Zhang C-P, Chu Y-S, Wang Y-L, Zhang J-X, Wu D-K, Zhang K-Q, Niu X-M (2012) Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J Am Chem Soc 134(50):20306–20309

    Article  CAS  PubMed  Google Scholar 

  • Ha TM, Ko W, Lee SJ, Kim Y-C, Son J-Y, Sohn JH, Yim JH, Oh H (2017) Anti-inflammatory effects of curvularin-type metabolites from a marine-derived fungal strain Penicillium sp. SF-5859 in lipopolysaccharide-induced raw264. 7 macrophages. Mar Drugs 15(9):282

    Article  PubMed Central  CAS  Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Env Sci Bio/Technol 15(2):147–172

    Article  Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Nadeem S, Shah AA, Hasan F (2017) Potential of psychrotrophic fungi isolated from Siachen glacier, Pakistan, to produce antimicrobial metabolites. Appl Ecol Environ Res 15(3):1157–1171

    Article  Google Scholar 

  • He J, Wijeratne EK, Bashyal BP, Zhan J, Seliga CJ, Liu MX, Pierson EE, Pierson LS, VanEtten HD, Gunatilaka AL (2004) Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J Nat Prod 67(12):1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2016) Natural products from marine fungi—still an underrepresented resource. Mar Drugs 14(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157(1):37–48

    Article  PubMed  Google Scholar 

  • Jiang W, Ye P, Chen C-TA, Wang K, Liu P, He S, Wu X, Gan L, Ye Y, Wu B (2013) Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 11(12):4761–4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Qin S, Gao H, Zhu G, Wang W, Zhu W, Wang Y (2018) An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress. Extremophiles 22(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Nakajima H, Hamasaki T (1989) Structure of rosellichalasin, a new metabolite produced by Rosellinia necatrix. Agric Biol Chem 53(6):1699–1701

    CAS  Google Scholar 

  • Kohno J, Nonaka N, Nishio M, Ohnuki T, Kawano K, Okuda T, Komatsubara S (1999) TMC-169, a new antibiotic of the aspochalasin group produced by Aspergillus flavipes. J Antibio 52(6):575–577

    Article  CAS  Google Scholar 

  • Kumla D, Shine Aung T, Buttachon S, Dethoup T, Gales L, Pereira JA, Inácio Â, Costa PM, Lee M, Sekeroglu N (2017) A new dihydrochromone dimer and other secondary metabolites from cultures of the marine sponge-associated fungi Neosartorya fennelliae KUFA 0811 and Neosartorya tsunodae KUFC 9213. Mar Drugs 15(12):375

    Article  PubMed Central  CAS  Google Scholar 

  • Leão PN, Costa M, Ramos V, Pereira AR, Fernandes VC, Domingues VF, Gerwick WH, Vasconcelos VM, Martins R (2013) Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 8(7):e69562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71(9):1643–1646

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li D, Luan Y, Gu Q, Zhu T (2012) Cytotoxic metabolites from the antarctic psychrophilic fungus Oidiodendron truncatum. J Nat Prod 75(5):920–927

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Nong X-H, Huang Z-H, Qi S-H (2017) Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J Agric Food Chem 65(25):5114–5121

    Article  CAS  PubMed  Google Scholar 

  • Liao W-Y, Shen C-N, Lin L-H, Yang Y-L, Han H-Y, Chen J-W, Kuo S-C, Wu S-H, Liaw C-C (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75(4):630–635

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Wu G, Gu Q, Zhu T, Li D (2014) New eremophilane-type sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19 N-1. Arch Pharm Res 37(7):839–844

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Wu Q, Yu Y, Liang Z, Liu Y, Zhou L, Tang L, Zhou X (2017) Penicilliumin B, a novel sesquiterpene methylcyclopentenedione from a deep sea-derived Penicillium strain with renoprotective activities. Sci Rep 7(1):10757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Zhang S, Zhu J, Pan H, Bai J, Li Z, Guan L, Liu G, Yuan C, Wu X (2015) Two new amides from a halotolerant fungus, Myrothecium sp. GS-17. J Antibio 68(4):267

    Article  CAS  Google Scholar 

  • Liu F-A, Lin X, Zhou X, Chen M, Huang X, Yang B, Tao H (2017) Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules 22(12):1999

    Article  PubMed Central  Google Scholar 

  • Lu Z-Y, Lin Z-J, Wang W-L, Du L, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W-M (2008) Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57. J Nat Prod 71(4):543–546

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Zhou X, Lin X, Qin X, Zhang T, Wang J, Tu Z, Yang B, Liao S, Tian Y (2017) Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat Prod Res 31(16):1958–1962

    Article  CAS  PubMed  Google Scholar 

  • Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SC, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Mendes G, Gonçalves VN, Souza-Fagundes EM, Kohlhoff M, Rosa CA, Zani CL, Cota BB, Rosa LH, Johann S (2016) Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds. Mem Inst Oswaldo Cruz 111(3):209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarri M, Jégou C, Bondon A, Pottier S, Bach S, Baratte B, Ruchaud S, Barbier G, Burgaud G, Fleury Y (2017) Bioactive Metabolites from the deep subseafloor fungus Oidiodendron griseum UBOCC-A-114129. Mar Drugs 15(4):111

    Article  PubMed Central  CAS  Google Scholar 

  • Niu S, Fan Z-W, Xie C-L, Liu Q, Luo Z-H, Liu G, Yang X-W (2017) Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J Nat Prod 80(7):2174–2177

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Liu Q, Xia J-M, Xie C-L, Luo Z-H, Shao Z, Liu G-M, Yang X-W (2018a) Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent anti-food allergic activities. J Agric Food Chem

  • Niu S, Xie C-L, Xia J-M, Luo Z-H, Shao Z, Yang X-W (2018b) New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Sci Rep 8(1):530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34(2):254–258

    Article  CAS  Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161(10):799–809

    Article  PubMed  Google Scholar 

  • Oro L, Ciani M, Comitini F (2016) Yeasts from xerophilic environments reveal antimicrobial action against fruit pathogenic molds. J Food Saf 36(1):100–108

    Article  Google Scholar 

  • Park HB, Kwon HC, Lee C-H, Yang HO (2009) Glionitrin A, an antibiotic− antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod 72(2):248–252

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Gao H, Zhang X, Wang S, Wu C, Gu Q, Guo P, Zhu T, Li D (2014) Psychrophilins E–H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. J Nat Prod 77(10):2218–2223

    Article  CAS  PubMed  Google Scholar 

  • Putri SP, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2010) Ophiosetin, a new tetramic acid derivative from the mycopathogenic fungus Elaphocordyceps ophioglossoides. J Antibiot 63(4):195–198

  • Rafiq M, Hayat M, Anesio A, Jamil SUU, Hassan N, Shah A, Hasan F (2017) Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. 12

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092

    Article  CAS  PubMed  Google Scholar 

  • Ruecker A, Schröder C, Byrne J, Weigold P, Behrens S, Kappler A (2016) Geochemistry and mineralogy of western Australian salt lake sediments: implications for meridiani planum on mars. Astrobiology 16(7):525–538

    Article  CAS  PubMed  Google Scholar 

  • Sepcic K, Zalar P, Gunde-Cimerman N (2010) Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar Drugs 9(1):43–58

    Article  PubMed  CAS  Google Scholar 

  • Singh VP, Yedukondalu N, Sharma V, Kushwaha M, Sharma R, Chaubey A, Kumar A, Singh D, Vishwakarma RA (2018) Lipovelutibols A–D: cytotoxic lipopeptaibols from the Himalayan cold habitat fungus Trichoderma velutinum. J Nat Prod

  • Stierle AA, Stierle DB, Goldstein E, Parker K, Bugni T, Baarson C, Gress J, Blake D (2003) A novel 5-HT receptor ligand and related cytotoxic compounds from an acid mine waste extremophile. J Nat Prod 66(8):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Kemp K (2004a) Novel sesquiterpenoid matrix metalloproteinase-3 inhibitors from an acid mine waste extremophile. J Nat Prod 67(8):1392–1395

    Article  CAS  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Hobbs JD, Stokken J, Clardy J (2004b) Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Org Lett 6(6):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Organomet Chem 71(14):5357–5360

    Article  CAS  Google Scholar 

  • Stierle DB, Stierle AA, Patacini B (2007) The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. J Nat Prod 70(11):1820–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Patacini B (2008) The berkeleyamides, amides from the acid lake fungus Penicillum rubrum. J Nat Prod 71(5):856–860

    Article  CAS  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Patacini B, McIntyre K, Girtsman T, Bolstad E (2011) Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J Nat Prod 74(10):2273–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Girtsman T (2012a) Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 75(3):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle DB, Stierle AA, Girtsman T, McIntyre K, Nichols J (2012b) Caspase-1 and-3 inhibiting drimane sesquiterpenoids from the extremophilic fungus Penicillium solitum. J Nat Prod 75(2):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Mitman GG, Snyder S, Antczak C, Djaballah H (2014) Phomopsolides and related compounds from the alga-associated fungus, Penicillium clavigerum. Nat Prod Commun 9(1):87–90

    CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Girtsman T, Mou T, Antczak C, Djaballah H (2015) Azaphilones from an acid mine extremophile strain of a Pleurostomophora sp. J Nat Prod 78(12):2917–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, McGrath K, Klepacki D (2017) The berkeleylactones, antibiotic macrolides from fungal coculture. J Nat Prod 80(4):1150–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su-lin LL, Pettersson OV, Rice T, Hocking AD, Schnürer J (2011) The extreme xerophilic mould Xeromyces bisporus—growth and competition at various water activities. Int J Food Microbiol 145(1):57–63

    Article  Google Scholar 

  • Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhu T, Tao H, Lu Z, Fang Y, Gu Q, Zhu W (2007) Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J Antibio 60(10):603

    Article  CAS  Google Scholar 

  • Wang W, Wang Y, Tao H, Peng X, Liu P, Zhu W (2009) Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J Nat Prod 72(9):1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang Y, Wang W, Fu P, Liu P, Zhu W (2011a) Anti-influenza virus polyketides from the acid-tolerant fungus Penicillium purpurogenum JS03–21. J Nat Prod 74(9):2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zheng J-K, Qu H-J, Liu P-P, Wang Y, Zhu W-M (2011b) A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06–1. J Antibio 64(10):679

    Article  CAS  Google Scholar 

  • Wang Y, Zheng J, Liu P, Wang W, Zhu W (2011c) Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar Drugs 9(8):1368–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang Y, Liu P, Wang W, Fan Y, Zhu W (2013) Purpurides B and C, Two new sesquiterpene esters from the aciduric fungus Penicillium purpurogenum JS03–21. Chem Biodivers 10(7):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen R, Luo Z, Wang W, Chen J (2018) Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat Prod Res 32(5):558–563

    Article  PubMed  CAS  Google Scholar 

  • Wiese J, Aldemir H, Schmaljohann R, Gulder TA, Imhoff JF (2017) Asperentin B, a new inhibitor of the protein tyrosine phosphatase 1B. Mar Drugs 15(6):191

    Article  PubMed Central  CAS  Google Scholar 

  • Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26(1):44–71

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11(4):1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Liu H, Wu N, Liu M, Wei J, Zhang Y, Lin X (2013) Characterization of the high cytochalasin E and rosellichalasin producing-Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J Microbiol Biotechnol 29(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhang X, Nong X, Wang J, Qi S (2017) Brevianamides and mycophenolic acid derivatives from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Mar Drugs 15(2):43

    Article  PubMed Central  CAS  Google Scholar 

  • Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, Wu SH (2007) Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chem-A Europ. J. 13(24):6985–6991

    Article  CAS  Google Scholar 

  • Yang YL, Liao WY, Liu WY, Liaw CC, Shen CN, Huang ZY, Wu SH (2009) Discovery of new natural products by intact-cell mass spectrometry and lc-spe-nmr: malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chem Eur J 15(43):11573–11580

    Article  CAS  PubMed  Google Scholar 

  • Zhao D-L, Wang D, Tian X-Y, Cao F, Li Y-Q, Zhang C-S (2018) Anti-phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Mar Drugs 16(1):36

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou G-X, Wijeratne EK, Bigelow D, Pierson LS, VanEtten HD, Gunatilaka AL (2004) Aspochalasins I, J, and K: three new cytotoxic cytochalasans of Aspergillus f lavipes from the rhizosphere of Ericameria l aricifolia of the Sonoran Desert. J Nat Prod 67(3):328–332

    Article  CAS  PubMed  Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16(1):53–61

    Article  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank the Chinese Scholarship Council.

Funding

This work was supported by the China Postdoctoral Science Foundation (2016M602291).

Author information

Authors and Affiliations

Authors

Contributions

MI, MWU, and FH carried out literature review, designed the study, and wrote the manuscript. MI with the help of SM, UF, and MR draw the chemical structures and compiled the tables. MWU and FH proofread the manuscript. All authors read and approved the final version of manuscript.

Corresponding authors

Correspondence to Muhammad Wajid Ullah or Fariha Hasan.

Ethics declarations

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrar, M., Ullah, M.W., Manan, S. et al. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl Microbiol Biotechnol 104, 2777–2801 (2020). https://doi.org/10.1007/s00253-020-10399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10399-0

Keywords

Navigation