Skip to main content
Log in

Materials and Microenvironments for Engineering the Intestinal Epithelium

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The barrier functions of the gastrointestinal tract rely in large part on a single layer of columnar intestinal epithelial cells. These epithelial cells are mediators of intestinal homeostasis, regulating and communicating biochemical signals between underlying stromal cells and luminal cues. The development of representative in vitro models to recapitulate the gastrointestinal epithelium is crucial to understanding cell–cell interactions during intestinal homeostasis and dysfunction. Ideally, models would contain microbiota/immune cells, polarized intestinal architecture, multilayered cellular complexity, extracellular matrix, biochemical cues, and mechanical deformation. This review focuses on historical and state of the art biomaterials and substrates used in the field to establish static and fluidic models of the intestinal epithelium. A discussion of conventional adenocarcinoma colon cancer cell lines, primary intestinal epithelial cells derived from organoids, and stromal support cells such as enteric neurons, myofibroblasts, and immune cells, as well as the importance of increasing cellular complexity and future outlook is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altay, G., E. Larranaga, S. Tosi, F. M. Barriga, E. Batlle, V. Fernandez-Majada, and E. Martinez. Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Sci. Rep. 9(1):10140, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Andrews, C., M. H. McLean, and S. K. Durum. Cytokine tuning of intestinal epithelial function. Front. Immunol. 9:1270, 2018.

    PubMed  PubMed Central  Google Scholar 

  3. Artursson, P., K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46(1–3):27–43, 2001.

    CAS  PubMed  Google Scholar 

  4. Barber, K., L. Studer, and F. Fattahi. Derivation of enteric neuron lineages from human pluripotent stem cells. Nat. Protoc. 14(4):1261–1279, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrila, J., A. Crabbe, J. Yang, K. Franco, S. D. Nydam, R. J. Forsyth, R. R. Davis, S. Gangaraju, C. M. Ott, C. B. Coyne, M. J. Bissell, and C. A. Nickerson. Modeling host-pathogen interactions in the context of the microenvironment: three-dimensional cell culture comes of age. Infect Immunol. 2018. https://doi.org/10.1128/IAI.00282-18.

    Article  Google Scholar 

  6. Bartfeld, S., T. Bayram, M. van de Wetering, M. Huch, H. Begthel, P. Kujala, R. Vries, P. J. Peters, and H. Clevers. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136, 2015.

    PubMed  Google Scholar 

  7. Bartfeld, S., and H. Clevers. Organoids as model for infectious diseases: culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J Vis Exp 105:e53359, 2015.

    Google Scholar 

  8. Bein, A., W. Shin, S. Jalili-Firoozinezhad, M. H. Park, A. Sontheimer-Phelps, A. Tovaglieri, A. Chalkiadaki, H. J. Kim, and D. E. Ingber. Microfluidic Organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5(4):659–668, 2018.

    PubMed  PubMed Central  Google Scholar 

  9. Berthoud, H. R., A. Jedrzejewska, and T. L. Powley. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J. Comp. Neurol. 301(1):65–79, 1990.

    CAS  PubMed  Google Scholar 

  10. Bjerknes, M., and H. Cheng. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc. Natl. Acad. Sci. USA 98(22):12497–12502, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bricks, T., P. Paullier, A. Legendre, M. J. Fleury, P. Zeller, F. Merlier, P. M. Anton, and E. Leclerc. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. In Vitro 28(5):885–895, 2014.

    CAS  PubMed  Google Scholar 

  12. Brun, P., M. C. Giron, M. Qesari, A. Porzionato, V. Caputi, C. Zoppellaro, S. Banzato, A. R. Grillo, L. Spagnol, and R. De Caro. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145(6):1323–1333, 2013.

    CAS  PubMed  Google Scholar 

  13. Cabarrocas, J., T. C. Savidge, and R. S. Liblau. Role of enteric glial cells in inflammatory bowel disease. Glia 41(1):81–93, 2003.

    PubMed  Google Scholar 

  14. Calatayud, M., O. Dezutter, E. Hernandez-Sanabria, S. Hidalgo-Martinez, F. J. Meysman, and T. Van de Wiele. Development of a host–microbiome model of the small intestine. FASEB J. 33(3):3985–3996, 2018.

    PubMed  Google Scholar 

  15. Capeling, M. M., M. Czerwinski, S. Huang, Y. H. Tsai, A. Wu, M. S. Nagy, B. Juliar, N. Sundaram, Y. Song, W. M. Han, S. Takayama, E. Alsberg, A. J. Garcia, M. Helmrath, A. J. Putnam, and J. R. Spence. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 12(2):381–394, 2019.

    CAS  Google Scholar 

  16. Cash, B., S. Sullivan, and V. Barghout. Total costs of IBS: employer and managed care perspective. Am. J. Manage. Care 11(1 Suppl):S7–S16, 2005.

    Google Scholar 

  17. Chan, H. F., R. Zhao, G. A. Parada, H. Meng, K. W. Leong, L. G. Griffith, and X. Zhao. Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl. Acad. Sci. U.S.A. 115(29):7503–7508, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chassaing, B., M. Kumar, M. T. Baker, V. Singh, and M. Vijay-Kumar. Mammalian gut immunity. Biomed J 37(5):246–258, 2014.

    PubMed  Google Scholar 

  19. Chen, W. L. K., C. Edington, E. Suter, J. Yu, J. J. Velazquez, J. G. Velazquez, M. Shockley, E. M. Large, R. Venkataramanan, D. J. Hughes, C. L. Stokes, D. L. Trumper, R. L. Carrier, M. Cirit, L. G. Griffith, and D. A. Lauffenburger. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114(11):2648–2659, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y., Y. Lin, K. M. Davis, Q. Wang, J. Rnjak-Kovacina, C. Li, R. R. Isberg, C. A. Kumamoto, J. Mecsas, and D. L. Kaplan. Robust bioengineered 3D functional human intestinal epithelium. Sci. Rep. 5:13708, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, H. J., P. Miller, and M. L. Shuler. A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab. Chip 18(14):2036–2046, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Y., W. Zhou, T. Roh, M. K. Estes, and D. L. Kaplan. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE 12(11):e0187880, 2017.

    PubMed  PubMed Central  Google Scholar 

  23. Co, J. Y., M. Margalef-Catala, X. Li, A. T. Mah, C. J. Kuo, D. M. Monack, and M. R. Amieva. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26(9):2509–2520, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Costantini, T. W., V. Bansal, M. Krzyzaniak, J. G. Putnam, C. Y. Peterson, W. H. Loomis, P. Wolf, A. Baird, B. P. Eliceiri, and R. Coimbra. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299(6):G1308–G1318, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Costello, C. M., J. Hongpeng, S. Shaffiey, J. Yu, N. K. Jain, D. Hackam, and J. C. March. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 111(6):1222–1232, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Costello, C. M., M. B. Phillipsen, L. M. Hartmanis, M. A. Kwasnica, V. Chen, D. Hackam, M. W. Chang, W. E. Bentley, and J. C. March. Microscale Bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7(1):12515, 2017.

    PubMed  PubMed Central  Google Scholar 

  27. Costello, C. M., R. M. Sorna, Y. L. Goh, I. Cengic, N. K. Jain, and J. C. March. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11(7):2030–2039, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cruz-Acuna, R., M. Quiros, A. E. Farkas, P. H. Dedhia, S. Huang, D. Siuda, V. Garcia-Hernandez, A. J. Miller, J. R. Spence, A. Nusrat, and A. J. Garcia. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19(11):1326–1335, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. DeForest, C. A., and D. A. Tirrell. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14(5):523–531, 2015.

    CAS  PubMed  Google Scholar 

  30. Devriese, S., L. Van den Bossche, S. Van Welden, T. Holvoet, I. Pinheiro, P. Hindryckx, M. De Vos, and D. Laukens. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol. 148(1):85–93, 2017.

    CAS  PubMed  Google Scholar 

  31. Dharmsathaphorn, K., J. A. Mcroberts, K. G. Mandel, L. D. Tisdale, and H. Masui. A human colonic tumor-cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246(2):G204–G208, 1984.

    CAS  PubMed  Google Scholar 

  32. DiMarco, R. L., J. Su, K. S. Yan, R. Dewi, C. J. Kuo, and S. C. Heilshorn. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr. Biol. (Camb.) 6(2):127–142, 2014.

    CAS  PubMed Central  Google Scholar 

  33. Donohoe, C. L., and J. V. Reynolds. Short bowel syndrome. The Surgeon 8(5):270–279, 2010.

    PubMed  Google Scholar 

  34. Dosh, R. H., A. Essa, N. Jordan-Mahy, C. Sammon, and C. L. Le Maitre. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomater. 62:128–143, 2017.

    CAS  PubMed  Google Scholar 

  35. Dosh, R. H., N. Jordan-Mahy, C. Sammon, and C. L. Le Maitre. Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. Sci. Rep. 9(1):1812, 2019.

    PubMed  PubMed Central  Google Scholar 

  36. Doshi, J. A., Q. Cai, J. L. Buono, W. M. Spalding, P. Sarocco, H. Tan, J. J. Stephenson, and R. T. Carson. Economic burden of irritable bowel syndrome with constipation: a retrospective analysis of health care costs in a commercially insured population. J. Manage. Care Spec. Pharm. 20(4):382–390, 2014.

    Google Scholar 

  37. Drossman, D. A. J. G. The functional gastrointestinal disorders and the Rome III process. Gastroenterology 130(5):1377–1390, 2006.

    PubMed  Google Scholar 

  38. Drossman, D. A. J. G. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology 150(6):1262–1279, 2016.

    Google Scholar 

  39. Edington, C. D., W. L. K. Chen, E. Geishecker, T. Kassis, L. R. Soenksen, B. M. Bhushan, D. Freake, J. Kirschner, C. Maass, N. Tsamandouras, J. Valdez, C. D. Cook, T. Parent, S. Snyder, J. Yu, E. Suter, M. Shockley, J. Velazquez, J. J. Velazquez, L. Stockdale, J. P. Papps, I. Lee, N. Vann, M. Gamboa, M. E. LaBarge, Z. Zhong, X. Wang, L. A. Boyer, D. A. Lauffenburger, R. L. Carrier, C. Communal, S. R. Tannenbaum, C. L. Stokes, D. J. Hughes, G. Rohatgi, D. L. Trumper, M. Cirit, and L. G. Griffith. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8(1):4530, 2018.

    PubMed  PubMed Central  Google Scholar 

  40. Evans, G. S., N. Flint, A. S. Somers, B. Eyden, and C. S. Potten. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101(Pt 1):219–231, 1992.

    PubMed  Google Scholar 

  41. Everhart, J. E., and C. E. Ruhl. Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386, 2009.

    PubMed  Google Scholar 

  42. Fattahi, F., J. A. Steinbeck, S. Kriks, J. Tchieu, B. Zimmer, S. Kishinevsky, N. Zeltner, Y. Mica, W. El-Nachef, H. Zhao, E. de Stanchina, M. D. Gershon, T. C. Grikscheit, S. Chen, and L. Studer. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531(7592):105–109, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Finkbeiner, S. R., J. J. Freeman, M. M. Wieck, W. El-Nachef, C. H. Altheim, Y. H. Tsai, S. Huang, R. Dyal, E. S. White, T. C. Grikscheit, D. H. Teitelbaum, and J. R. Spence. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol. Open 4(11):1462–1472, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fordham, R. P., S. Yui, N. R. Hannan, C. Soendergaard, A. Madgwick, P. J. Schweiger, O. H. Nielsen, L. Vallier, R. A. Pedersen, T. Nakamura, M. Watanabe, and K. B. Jensen. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13(6):734–744, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Franck, D., Y. G. Chung, J. Coburn, D. L. Kaplan, C. R. Estrada, Jr, and J. R. Mauney. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering. J. Tissue Eng. 5:2041731414556849, 2014.

    PubMed  PubMed Central  Google Scholar 

  46. Furness, J. B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81(1–3):87–96, 2000.

    CAS  PubMed  Google Scholar 

  47. Furness, J. B. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol. Motil. 20(Suppl 1):32–38, 2008.

    PubMed  Google Scholar 

  48. Furness, J. B. The Enteric Nervous System. Hoboken: Wiley, 2008.

    Google Scholar 

  49. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9(5):286–294, 2012.

    CAS  PubMed  Google Scholar 

  50. Furness, J. B., and M. Costa. Types of nerves in the enteric nervous system. Neuroscience 5(1):1–20, 1980.

    CAS  PubMed  Google Scholar 

  51. Furness, J. B., and M. Costa. The Enteric Nervous System. Edinburgh: Churchill Livingstone, 1987.

    Google Scholar 

  52. Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 21(8):1237–1244, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gershon, M. Quiet but powerful: the role of the enteric nervous system in the pathophysiology of gastrointestinal disease (214.1). FASEB J. 28(1 Supplement):214.1, 2014.

    Google Scholar 

  54. Gibbons, D. L., and J. Spencer. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4(2):148–157, 2011.

    CAS  PubMed  Google Scholar 

  55. Gjorevski, N., N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordonez-Moran, H. Clevers, and M. P. Lutolf. Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564, 2016.

    CAS  PubMed  Google Scholar 

  56. Graham, M. F., R. F. Diegelmann, C. O. Elson, W. J. Lindblad, N. Gotschalk, S. Gay, and R. Gay. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology 94(2):257–265, 1988.

    CAS  PubMed  Google Scholar 

  57. Greicius, G., Z. Kabiri, K. Sigmundsson, C. Liang, R. Bunte, M. K. Singh, and D. M. Virshup. PDGFRalpha(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl. Acad. Sci. USA 115(14):E3173–E3181, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Grossmann, J., K. Walther, M. Artinger, S. Kiessling, M. Steinkamp, W. K. Schmautz, F. Stadler, F. Bataille, M. Schultz, J. Scholmerich, and G. Rogler. Progress on isolation and short-term ex vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur. J. Cell Biol. 82(5):262–270, 2003.

    CAS  PubMed  Google Scholar 

  59. Gunasekara, D. B., M. DiSalvo, Y. Wang, D. L. Nguyen, M. I. Reed, J. Speer, C. E. Sims, S. T. Magness, and N. L. Allbritton. Development of arrayed colonic organoids for screening of secretagogues associated with enterotoxins. Anal. Chem. 90(3):1941–1950, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gunasekara, D. B., J. Speer, Y. Wang, D. L. Nguyen, M. I. Reed, N. M. Smiddy, J. S. Parker, J. K. Fallon, P. C. Smith, C. E. Sims, S. T. Magness, and N. L. Allbritton. A monolayer of primary colonic epithelium generated on a scaffold with a gradient of stiffness for drug transport studies. Anal. Chem. 90(22):13331–13340, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hernandez-Gordillo, V., T. Kassis, A. Lampejo, G. Choi, M. E. Gamboa, J. S. Gnecco, D. T. Breault, R. Carrier, and L. G. Griffith. Niche-inspired synthetic matrices for epithelial organoid culture. bioRxiv 2019. https://doi.org/10.1101/806919.

    Article  Google Scholar 

  62. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890, 2010.

    CAS  PubMed  Google Scholar 

  63. Imura, Y., Y. Asano, K. Sato, and E. Yoshimura. A microfluidic system to evaluate intestinal absorption. Anal. Sci. 25(12):1403–1407, 2009.

    CAS  PubMed  Google Scholar 

  64. Imura, Y., K. Sato, and E. Yoshimura. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal. Chem. 82(24):9983–9988, 2010.

    CAS  PubMed  Google Scholar 

  65. Jabaji, Z., G. J. Brinkley, H. A. Khalil, C. M. Sears, N. Y. Lei, M. Lewis, M. Stelzner, M. G. Martin, and J. C. Dunn. Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9(9):e107814, 2014.

    PubMed  PubMed Central  Google Scholar 

  66. Janssen, A. W., and S. Kersten. The role of the gut microbiota in metabolic health. FASEB J. 29(8):3111–3123, 2015.

    CAS  PubMed  Google Scholar 

  67. Jee, J. H., D. H. Lee, J. Ko, S. Hahn, S. Y. Jeong, H. K. Kim, E. Park, S. Y. Choi, S. Jeong, J. W. Lee, H. J. Cho, M. S. Kwon, and J. Yoo. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019. https://doi.org/10.1155/2019/8472712.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kabiri, Z., G. Greicius, B. Madan, S. Biechele, Z. Zhong, H. Zaribafzadeh, Edison, J. Aliyev, Y. Wu, R. Bunte, B. O. Williams, J. Rossant, and D. M. Virshup. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141(11):2206–2215, 2014.

    CAS  PubMed  Google Scholar 

  69. Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312, 2016.

    CAS  PubMed  Google Scholar 

  70. Kanzato, H., M. Manabe, and M. Shimizu. An in vitro approach to the evaluation of the cross talk between intestinal epithelium and macrophages. Biosci. Biotechnol. Biochem. 65(2):449–451, 2001.

    CAS  PubMed  Google Scholar 

  71. Kasendra, M., A. Tovaglieri, A. Sontheimer-Phelps, S. Jalili-Firoozinezhad, A. Bein, A. Chalkiadaki, W. Scholl, C. Zhang, H. Rickner, C. A. Richmond, H. Li, D. T. Breault, and D. E. Ingber. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep 8(1):2871, 2018.

    PubMed  PubMed Central  Google Scholar 

  72. Kashfi, S. M. H., S. Almozyan, N. Jinks, B. K. Koo, and A. S. Nateri. Morphological alterations of cultured human colorectal matched tumour and healthy organoids. Oncotarget 9(12):10572–10584, 2018.

    PubMed  PubMed Central  Google Scholar 

  73. Keku, T. O., S. Dulal, A. Deveaux, B. Jovov, and X. Han. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 308(5):G351–G363, 2014.

    PubMed  PubMed Central  Google Scholar 

  74. Kim, H. J., D. Huh, G. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip 12(12):2165–2174, 2012.

    CAS  PubMed  Google Scholar 

  75. Kim, H. J., and D. E. Ingber. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb.) 5(9):1130–1140, 2013.

    CAS  Google Scholar 

  76. Kim, H. J., H. Li, J. J. Collins, and D. E. Ingber. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. USA 113(1):E7–E15, 2016.

    CAS  PubMed  Google Scholar 

  77. Kim, R., Y. Wang, S. J. Hwang, P. J. Attayek, N. M. Smiddy, M. I. Reed, C. E. Sims, and N. L. Allbritton. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone. Lab Chip 18(15):2202–2213, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kimura, H., T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746, 2008.

    CAS  PubMed  Google Scholar 

  79. Kingsley, D. M., C. H. McCleery, C. D. L. Johnson, M. T. K. Bramson, D. Rende, R. J. Gilbert, and D. T. Corr. Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus. J. Mech. Behav. Biomed. Mater. 92:152–161, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Koloski, N., M. Jones, J. Kalantar, M. Weltman, J. Zaguirre, and N. Talley. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61(9):1284–1290, 2012.

    CAS  PubMed  Google Scholar 

  81. Ladd, M. R., C. Costello, C. Gosztyla, A. Werts, B. Johnson, W. Fulton, L. Y. Martin, E. Redfield, B. Crawford, and R. Panaparambil. Development of intestinal scaffolds that mimic native mammalian intestinal tissue. Tissue Eng. 25:1225–1241, 2019.

    CAS  Google Scholar 

  82. Ladd, M. R., C. M. Costello, C. Gosztyla, A. D. Werts, B. Johnson, W. B. Fulton, L. Y. Martin, E. J. Redfield, B. Crawford, R. Panaparambil, C. P. Sodhi, J. C. March, and D. J. Hackam. Development of intestinal scaffolds that mimic native mammalian intestinal tissue. Tissue Eng. Part A 25(17–18):1225–1241, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ladd, M. R., L. Y. Martin, A. Werts, C. Costello, C. P. Sodhi, W. B. Fulton, J. C. March, and D. J. Hackam. The development of newborn porcine models for evaluation of tissue-engineered small intestine. Tissue Eng. Part C Methods 24(6):331–345, 2018.

    PubMed  PubMed Central  Google Scholar 

  84. Lee, A., A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, J. Bliley, P. Campbell, and A. Feinberg. 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487, 2019.

    CAS  PubMed  Google Scholar 

  85. Lee, C. H., A. Singla, and Y. Lee. Biomedical applications of collagen. Int. J. Pharm. 221(1–2):1–22, 2001.

    CAS  PubMed  Google Scholar 

  86. Leonard, F., E. M. Collnot, and C. M. Lehr. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol. Pharm. 7(6):2103–2119, 2010.

    CAS  PubMed  Google Scholar 

  87. Lesuffleur, T., A. Barbat, E. Dussaulx, and A. Zweibaum. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 50(19):6334–6343, 1990.

    CAS  PubMed  Google Scholar 

  88. Li, W., L. Huang, J. Zeng, W. Lin, K. Li, J. Sun, W. Huang, J. Chen, G. Wang, Q. Ke, J. Duan, X. Lai, R. Chen, M. Liu, Y. Liu, T. Wang, X. Yang, Y. Chen, H. Xia, and A. P. Xiang. Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Mol. Psychiatry 23(3):499–508, 2018.

    CAS  PubMed  Google Scholar 

  89. Li, X., A. Ootani, and C. Kuo. An air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol. Biol. 1422:33–40, 2016.

    CAS  PubMed  Google Scholar 

  90. Liu, Y., Z. Qi, X. Li, Y. Du, and Y. G. Chen. Monolayer culture of intestinal epithelium sustains Lgr5(+) intestinal stem cells. Cell Discov. 4:32, 2018.

    PubMed  PubMed Central  Google Scholar 

  91. Loftus, E. V. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517, 2004.

    PubMed  Google Scholar 

  92. Luu, L., L. J. Johnston, H. Derricott, S. D. Armstrong, N. Randle, C. S. Hartley, C. A. Duckworth, B. J. Campbell, J. M. Wastling, and J. L. Coombes. An open-format enteroid culture system for interrogation of interactions between toxoplasma gondii and the intestinal epithelium. Front. Cell Infect. Microbiol. 9:300, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Manousiouthakis, E., Y. Chen, D. M. Cairns, R. Pollard, K. Gerlovin, M. J. Dente, Y. Razavi, and D. L. Kaplan. Bioengineered in vitro enteric nervous system. J. Tissue Eng. Regen. Med. 13:1712–1723, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Martin, L. Y., M. R. Ladd, A. Werts, C. P. Sodhi, J. C. March, and D. J. Hackam. Tissue engineering for the treatment of short bowel syndrome in children. Pediatric Res. 83(1–2):249, 2018.

    CAS  Google Scholar 

  95. Martinez-Maqueda, D., B. Miralles, and I. Recio. HT29 Cell line. In: The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models, edited by K. Verhoeckx. Cham: Springer, 2015, pp. 113–124.

    Google Scholar 

  96. Maschmeyer, I., A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster, and U. Marx. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15(12):2688–2699, 2015.

    CAS  PubMed  Google Scholar 

  97. Masungi, C., C. Borremans, B. Willems, J. Mensch, A. Van Dijck, P. Augustijns, M. E. Brewster, and M. Noppe. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds. J. Pharm. Sci. 93(10):2507–2521, 2004.

    CAS  PubMed  Google Scholar 

  98. Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12(8):453–466, 2011.

    CAS  PubMed  Google Scholar 

  99. Merker, H. J. Morphology of the basement membrane. Microsc. Res. Tech. 28(2):95–124, 1994.

    CAS  PubMed  Google Scholar 

  100. Miyoshi, H., R. Ajima, C. T. Luo, T. P. Yamaguchi, and T. S. Stappenbeck. Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science 338(6103):108–113, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mowat, A. M., and W. W. Agace. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14(10):667–685, 2014.

    CAS  PubMed  Google Scholar 

  102. Moyes, S. M., J. F. Morris, and K. E. Carr. Macrophages increase microparticle uptake by enterocyte-like Caco-2 cell monolayers. J. Anat. 217(6):740–754, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mulle, J. G., W. G. Sharp, and J. F. Cubells. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 15(2):337, 2013.

    PubMed  PubMed Central  Google Scholar 

  104. Munera, J. O., N. Sundaram, S. A. Rankin, D. Hill, C. Watson, M. Mahe, J. E. Vallance, N. F. Shroyer, K. L. Sinagoga, A. Zarzoso-Lacoste, J. R. Hudson, J. C. Howell, P. Chatuvedi, J. R. Spence, J. M. Shannon, A. M. Zorn, M. A. Helmrath, and J. M. Wells. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 21(1):51–64, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773, 2014.

    CAS  PubMed  Google Scholar 

  106. Nee, J., M. Zakari, M. A. Sugarman, J. Whelan, W. Hirsch, S. Sultan, S. Ballou, J. Iturrino, and A. Lembo. Efficacy of treatments for opioid-induced constipation: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16(10):1569–1584, 2018.

    CAS  PubMed  Google Scholar 

  107. Neunlist, M., P. Aubert, S. Bonnaud, L. Van Landeghem, E. Coron, T. Wedel, P. Naveilhan, A. Ruhl, B. Lardeux, T. Savidge, F. Paris, and J. P. Galmiche. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 292(1):G231–G241, 2007.

    CAS  PubMed  Google Scholar 

  108. Neunlist, M., F. Toumi, T. Oreschkova, M. Denis, J. Leborgne, C. L. Laboisse, J. P. Galmiche, and A. Jarry. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285(5):G1028–G1036, 2003.

    CAS  PubMed  Google Scholar 

  109. Neunlist, M., F. Toumi, T. Oreschkova, M. Denis, J. Leborgne, C. L. Laboisse, J.-P. Galmiche, and A. Jarry. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am. J. Physiol.-Gastrointest. Liver Physiol. 285(5):G1028–G1036, 2003.

    CAS  PubMed  Google Scholar 

  110. Noel, G., M. Doucet, J. P. Nataro, J. B. Kaper, N. C. Zachos, and M. F. Pasetti. Enterotoxigenic Escherichia coli is phagocytosed by macrophages underlying villus-like intestinal epithelial cells: modeling ex vivo innate immune defenses of the human gut. Gut Microbes 2017. https://doi.org/10.1080/19490976.2017.1398871.

    Article  PubMed  Google Scholar 

  111. Ootani, A., X. Li, E. Sangiorgi, Q. T. Ho, H. Ueno, S. Toda, H. Sugihara, K. Fujimoto, I. L. Weissman, M. R. Capecchi, and C. J. Kuo. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15(6):701–706, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pageot, L. P., N. Perreault, N. Basora, C. Francoeur, P. Magny, and J. F. Beaulieu. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc. Res. Tech. 49(4):394–406, 2000.

    CAS  PubMed  Google Scholar 

  113. Paris, F., Z. Fuks, A. Kang, P. Capodieci, G. Juan, D. Ehleiter, A. Haimovitz-Friedman, C. Cordon-Cardo, and R. Kolesnick. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297, 2001.

    CAS  PubMed  Google Scholar 

  114. Park, K., and D. Bass. Inflammatory bowel disease-attributable costs and cost-effective strategies in the United States: a review. Inflamm. Bowel Dis. 17(7):1603–1609, 2011.

    CAS  PubMed  Google Scholar 

  115. Powell, D. W., P. A. Adegboyega, J. F. Di Mari, and R. C. Mifflin. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 289(1):G2–G7, 2005.

    CAS  PubMed  Google Scholar 

  116. Pusch, J., M. Votteler, S. Gohler, J. Engl, M. Hampel, H. Walles, and K. Schenke-Layland. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials 32(30):7469–7478, 2011.

    CAS  PubMed  Google Scholar 

  117. Puzan, M., S. Hosic, C. Ghio, and A. Koppes. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. Sci. Rep. 8(1):6313, 2018.

    PubMed  PubMed Central  Google Scholar 

  118. Quaroni, A., and R. J. May. Chapter 20 Establishment and characterization of intestinal epithelial cell cultures. In: Methods in Cell Biology, edited by C. C. Harris, B. F. Trump, and G. D. Stoner. Cambridge: Academic Press Inc., 1980, pp. 403–427.

    Google Scholar 

  119. Rousset, M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie 68(9):1035–1040, 1986.

    CAS  PubMed  Google Scholar 

  120. Sambuy, Y., I. De Angelis, G. Ranaldi, M. L. Scarino, A. Stammati, and F. Zucco. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21(1):1–26, 2005.

    CAS  PubMed  Google Scholar 

  121. Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, and V. Gradinaru. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanders, K. M., S. D. Koh, S. Ro, and S. M. Ward. Regulation of gastrointestinal motility–insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9(11):633–645, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sato, T., D. E. Stange, M. Ferrante, R. G. Vries, J. H. Van Es, S. Van den Brink, W. J. Van Houdt, A. Pronk, J. Van Gorp, P. D. Siersema, and H. Clevers. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772, 2011.

    CAS  PubMed  Google Scholar 

  124. Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265, 2009.

    CAS  PubMed  Google Scholar 

  125. Savidge, T. C., P. Newman, C. Pothoulakis, A. Ruhl, M. Neunlist, A. Bourreille, R. Hurst, and M. V. Sofroniew. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132(4):1344–1358, 2007.

    CAS  PubMed  Google Scholar 

  126. Schlieve, C. R., K. L. Fowler, M. Thornton, S. Huang, I. Hajjali, X. Hou, B. Grubbs, J. R. Spence, and T. C. Grikscheit. Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Rep. 9(3):883–896, 2017.

    CAS  Google Scholar 

  127. Schneeberger, K., S. Roth, E. E. S. Nieuwenhuis, and S. Middendorp. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Disease Models & Mechanisms 2018. https://doi.org/10.1242/dmm.031088.

    Article  Google Scholar 

  128. Schwartz, D. M., M. O. Pehlivaner Kara, A. M. Goldstein, H. C. Ott, and A. K. Ekenseair. Spray delivery of intestinal organoids to reconstitute epithelium on decellularized native extracellular matrix. Tissue Eng. Part C Methods 23(9):565–573, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Semrad, C. E., and D. W. Powell. Approach to the patient with diarrhea and malabsorption. Cecil medicine (24th ed.). Philadelphia: Saunders Elsevier, 2011.

    Google Scholar 

  130. Shadish, J. A., G. M. Benuska, and C. A. DeForest. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18(9):1005–1014, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shah, P., J. V. Fritz, E. Glaab, M. S. Desai, K. Greenhalgh, A. Frachet, M. Niegowska, M. Estes, C. Jager, C. Seguin-Devaux, F. Zenhausern, and P. Wilmes. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7:11535, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Shim, K. Y., D. Lee, J. Han, N. T. Nguyen, S. Park, and J. H. Sung. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19(2):37, 2017.

    PubMed  Google Scholar 

  133. Shin, W., C. D. Hinojosa, D. E. Ingber, and H. J. Kim. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15:391–406, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Shin, W., and H. J. Kim. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 115(45):E10539–E10547, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shin, W., A. Wu, M. W. Massidda, C. Foster, N. Thomas, D. W. Lee, H. Koh, Y. Ju, J. Kim, and H. J. Kim. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7:13, 2019.

    PubMed  PubMed Central  Google Scholar 

  136. Shyer, A. E., T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil, D. L. Kaplan, C. J. Tabin, and L. Mahadevan. Villification: how the gut gets its villi. Science 342(6155):212–218, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Soucy, J. R., A. J. Bindas, A. N. Koppes, and R. A. Koppes. Instrumented microphysiological systems for real-time measurement and manipulation of cellular electrochemical processes. iScience 21:521–548, 2019.

    PubMed  PubMed Central  Google Scholar 

  138. Speer, J. E., D. B. Gunasekara, Y. Wang, J. K. Fallon, P. J. Attayek, P. C. Smith, C. E. Sims, and N. L. Allbritton. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J Biol. Eng. 13:36, 2019.

    PubMed  PubMed Central  Google Scholar 

  139. Spence, J. R., C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109, 2011.

    PubMed  Google Scholar 

  140. Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392, 2011.

    CAS  PubMed  Google Scholar 

  141. Susewind, J., C. D. Carvalho-Wodarz, U. Repnik, E. M. Collnot, N. Schneider-Daum, G. W. Griffiths, and C. M. Lehr. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 10(1):53–62, 2016.

    CAS  PubMed  Google Scholar 

  142. Talley, N. J. N. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20:121–129, 2008.

    PubMed  Google Scholar 

  143. Talley, N. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20(s1):121–129, 2008.

    PubMed  Google Scholar 

  144. Tan, H. Y., S. Trier, U. L. Rahbek, M. Dufva, J. P. Kutter, and T. L. Andresen. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS ONE 13(5):e0197101, 2018.

    PubMed  PubMed Central  Google Scholar 

  145. Thursby, E., and N. Juge. Introduction to the human gut microbiota. Biochem J 474(11):1823–1836, 2017.

    CAS  PubMed  Google Scholar 

  146. Tong, Z., K. Martyn, A. Yang, X. Yin, B. E. Mead, N. Joshi, N. E. Sherman, R. S. Langer, and J. M. Karp. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials 154:60–73, 2018.

    CAS  PubMed  Google Scholar 

  147. Valenta, T., B. Degirmenci, A. E. Moor, P. Herr, D. Zimmerli, M. B. Moor, G. Hausmann, C. Cantu, M. Aguet, and K. Basler. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15(5):911–918, 2016.

    CAS  PubMed  Google Scholar 

  148. van der Flier, L. G., and H. Clevers. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:241–260, 2009.

    PubMed  Google Scholar 

  149. Van Landeghem, L., J. Chevalier, M. M. Mahe, T. Wedel, P. Urvil, P. Derkinderen, T. Savidge, and M. Neunlist. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300(6):G976–G987, 2011.

    PubMed  PubMed Central  Google Scholar 

  150. Vancamelbeke, M., T. Laeremans, W. Vanhove, K. Arnauts, A. S. Ramalho, R. Farre, I. Cleynen, M. Ferrante, and S. Vermeire. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. J. Crohns Colitis 13(10):1351–1361, 2019.

    PubMed  PubMed Central  Google Scholar 

  151. Vishwakarma, A., and J. Karp. Biology and Engineering of Stem Cell Niches. London: Elsevier/Academic Press, p. 625, 2017.

    Google Scholar 

  152. Vishy, C. E., E. A. Swietlicki, V. Gazit, S. Amara, G. Heslop, J. Lu, M. S. Levin, and D. C. Rubin. Epimorphin regulates the intestinal stem cell niche via effects on the stromal microenvironment. Am. J. Physiol. Gastrointest. Liver Physiol. 315(2):G185–G194, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Vukicevic, S., H. K. Kleinman, F. P. Luyten, A. B. Roberts, N. S. Roche, and A. H. Reddi. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202(1):1–8, 1992.

    CAS  PubMed  Google Scholar 

  154. Wang, Y., M. DiSalvo, D. B. Gunasekara, J. Dutton, A. Proctor, M. S. Lebhar, I. A. Williamson, J. Speer, R. L. Howard, N. M. Smiddy, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell Mol. Gastroenterol. Hepatol. 4(1):165–182, 2017.

    PubMed  PubMed Central  Google Scholar 

  155. Wang, Y., D. B. Gunasekara, M. I. Reed, M. DiSalvo, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128:44–55, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, Y., R. Kim, D. B. Gunasekara, M. I. Reed, M. DiSalvo, D. L. Nguyen, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5(2):113–130, 2018.

    PubMed  Google Scholar 

  157. Wang, Z., E. Klipfell, B. J. Bennett, R. Koeth, B. S. Levison, B. DuGar, A. E. Feldstein, E. B. Britt, X. Fu, and Y.-M. Chung. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L., S. K. Murthy, G. A. Barabino, and R. L. Carrier. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31(29):7586–7598, 2010.

    CAS  PubMed  Google Scholar 

  159. Watson, C. L., M. M. Mahe, J. Munera, J. C. Howell, N. Sundaram, H. M. Poling, J. I. Schweitzer, J. E. Vallance, C. N. Mayhew, Y. Sun, G. Grabowski, S. R. Finkbeiner, J. R. Spence, N. F. Shroyer, J. M. Wells, and M. A. Helmrath. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20(11):1310–1314, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Winge, K., D. Rasmussen, and L. M. Werdelin. Constipation in neurological diseases. J. Neurol. Neurosurg. Psychiatry 74(1):13–19, 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Workman, M. J., M. M. Mahe, S. Trisno, H. M. Poling, C. L. Watson, N. Sundaram, C. F. Chang, J. Schiesser, P. Aubert, E. G. Stanley, A. G. Elefanty, Y. Miyaoka, M. A. Mandegar, B. R. Conklin, M. Neunlist, S. A. Brugmann, M. A. Helmrath, and J. M. Wells. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23(1):49–59, 2017.

    CAS  PubMed  Google Scholar 

  162. Yin, X., H. F. Farin, J. H. van Es, H. Clevers, R. Langer, and J. M. Karp. Niche-independent high-purity cultures of Lgr5 + intestinal stem cells and their progeny. Nat. Methods 11(1):106–112, 2014.

    CAS  PubMed  Google Scholar 

  163. Yu, J., S. Peng, D. Luo, and J. C. March. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109(9):2173–2178, 2012.

    CAS  PubMed  Google Scholar 

  164. Yui, S., L. Azzolin, M. Maimets, M. T. Pedersen, R. P. Fordham, S. L. Hansen, H. L. Larsen, J. Guiu, M. R. P. Alves, C. F. Rundsten, J. V. Johansen, Y. Li, C. D. Madsen, T. Nakamura, M. Watanabe, O. H. Nielsen, P. J. Schweiger, S. Piccolo, and K. B. Jensen. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22(1):35–49, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yui, S., T. Nakamura, T. Sato, Y. Nemoto, T. Mizutani, X. Zheng, S. Ichinose, T. Nagaishi, R. Okamoto, and K. Tsuchiya. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5 + stem cell. Nat. Med. 18(4):618–623, 2012.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Northeastern University for support.

Funding

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail Koppes.

Additional information

Associate Editor Erin Lavik oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, J., Wang, CM., Zhang, A.Q. et al. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 48, 1916–1940 (2020). https://doi.org/10.1007/s10439-020-02470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02470-8

Keywords

Navigation