Skip to main content
Log in

Tumor miRNA expression profile is related to vestibular schwannoma growth rate

  • Original Article - Tumor - Schwannoma
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Objective

Our objective was to investigate if the tumor microRNA (miRNA) expression profile was related to tumor growth rate. Growth-related miRNAs might be potential targets for future therapeutic intervention.

Material and methods

Tumor tissue was sampled during surgery of patients with a sporadic vestibular schwannoma. Tumor growth rate was determined by tumor measurement on the two latest pre-operative MRI scans. Tumor miRNA expression was analyzed using the Affymetrix Gene Chip® protocol, and CEL files were generated using GeneChip® Command Console® Software and normalized using Partek Genomics Suite 6.5. The CEL files were analyzed using the statistical software program R. Principal component analysis, affected gene ontology analysis, and analysis of miRNA expression fold changes were used for analysis of potential relations between miRNA expression profile and tumor growth rate.

Results and conclusion

Tumor miRNA expression is related to the growth rate of sporadic vestibular schwannomas. Rapid tumor growth is associated with deregulation of several miRNAs, including upregulation of miR-29abc, miR-19, miR-340-5p, miR-21, and miR-221 and downregulation of miR-744 and let-7b. Gene ontologies affected by the deregulated miRNAs included neuron development and differentiation, gene silencing, and negative regulation of various biological processes, including cellular and intracellular signaling and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. An J, Pan Y, Yan Z, Li W, Cui J, Yuan J, Tian L, Xing R, Lu Y (2013) MiR-23a in amplified 19p13.13 loci targets metallothionein 2A and promotes growth in gastric cancer cells. J Cell Biochem 114(9):2160–2169

    CAS  PubMed  Google Scholar 

  2. Capodanno A, Boldrini L, Proietti A et al (2013) Let-7g and miR-21 expression in non-small cell lung cancer: correlation with clinicopathological and molecular features. Int J Oncol 43(3):765–774

    CAS  PubMed  Google Scholar 

  3. Celis-Aguilar E, Lassaletta L, Torres-Martín M, Rodrigues FY, Nistal M, Castresana JS, Gavilan J, Rey JA (2012) The molecular biology of vestibular schwannomas and its association with hearing loss: a review. Genet Res Int 2012:1–10

    Google Scholar 

  4. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cioffi JA, Yue WY, Mendolia-loffredo S, Hansen KR, Wackym A, Hansen MR (2011) MicroRNA-21 over-expression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 31(9):1455–1462

    Google Scholar 

  6. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000

    CAS  PubMed  Google Scholar 

  7. Csardi G (2003) Targetscan.Hs.eg.db: TargetScan miRNA target predictions for human. https://bioconductor.riken.jp/packages/3.4/data/annotation/html/targetscan.Hs.eg.db.html. Accessed 15 Jan 2020

  8. Curtale G, Rubino M, Locati M (2019) MicroRNAs as molecular switches in macrophage activation. Front Immunol 10(MAR):1–13

    Google Scholar 

  9. Dai L, Wang W, Zhang S, Jiang Q, Wang R, Dai L, Cheng L, Yang Y, Wei Y-Q, Deng H-X (2012) Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int 36(8):765–770

    CAS  PubMed  Google Scholar 

  10. Dilwali S, Briët MC, Kao S, Fujita T, Landegger LD, Platt MP, Stankovic KM (2015) Preclinical validation of anti-nuclear factor-kappa B therapy to inhibit human vestibular schwannoma growth. Mol Oncol 9(7):1359–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ergun S, Arman K, Temiz E, Bozgeyik I, Yumrutaş Ö, Safdar M, Dağlı H, Arslan A, Oztuzcu S (2014) Expression patterns of miR-221 and its target Caspase-3 in different cancer cell lines. Mol Biol Rep 41(9):5877–5881

    CAS  PubMed  Google Scholar 

  12. Erkan EP, Breakefield XO, Saydam O (2011) miRNA signature of schwannomas: possible role (s) of “tumor suppressor” miRNAs in benign tumors. AbstrAct 2(3):265–270

    Google Scholar 

  13. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    CAS  PubMed  Google Scholar 

  14. Evans DG, Huson SM, Donnai D, Neary W, Blair V, Newton V, Harris R (1992) A clinical study of type 2 neurofibromatosis. Q J Med 84(304):603–618

    CAS  PubMed  Google Scholar 

  15. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez S, Risolino M, Mandia N, Talotta F, Soini Y, Incoronato M, Condorelli G, Banfi S, Verde P (2015) miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene 34(25):3240-3250

  17. Garzon R, Heaphy CE, Havelange V et al (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114(26):5331–5341

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    CAS  PubMed  Google Scholar 

  19. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    PubMed  PubMed Central  Google Scholar 

  20. Guo L, Zhao Y, Yang S, Cai M, Wu Q, Chen F (2013) Genome-wide screen for aberrantly expressed miRNAs reveals miRNA profile signature in breast cancer. Mol Biol Rep 40(3):2175–2186

    CAS  PubMed  Google Scholar 

  21. Hansen M, Gerds TA, Nielsen OH, Seidelin JB, Troelsen JT, Olsen J (2012) pcaGoPromoter--an R package for biological and regulatory interpretation of principal components in genome-wide gene expression data. PLoS One 7(2):e32394

  22. Hansen M, Gerds TA, Nielsen OH, Seidelin JB, Troelsen JT, Olsen J (2012) pcaGoPromoter--an R package for biological and regulatory interpretation of principal components in genome-wide gene expression data. PLoS One 7(2):e32394

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM, Chan EKL (2010) Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer 49(6):549–559

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV Infection by Targeting MicroRNA. New England Journal of Medicine 368 (18):1685-1694

  25. Jian Q, An Q, Zhu D, Hui K, Liu Y, Chi S, Li C (2014) MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol 34(18):3407–3420

    PubMed  PubMed Central  Google Scholar 

  26. Lan F-F, Wang H, Chen Y-C, Chan C-Y, Ng SS, Li K, Xie D, He M-L, Lin MC, Kung H-F (2011) Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer 128(2):319–331

    CAS  PubMed  Google Scholar 

  27. Laursen TM, Munk-Olsen T, Vestergaard M (2012) Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr Opin Psychiatry 25(2):83–88

    PubMed  Google Scholar 

  28. Lin F, Ding R, Zheng S, Xing D, Hong W, Zhou Z, Shen J (2014) Decrease expression of microRNA-744 promotes cell proliferation by targeting c-Myc in human hepatocellular carcinoma. Cancer Cell Int 14(1):58

    PubMed  PubMed Central  Google Scholar 

  29. Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, Tian Q, Zha R, Zhan R, He X (2011) MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis 32(11):1641–1647

    CAS  PubMed  Google Scholar 

  30. Xia Liu, Xiao-Bin LV, Xiao-Pai Wang, Yi Sang, Shuangbing Xu, Kaishun Hu, Mansi Wu, Yi Liang, Pan Liu, Jianjun Tang, Wen-Hua Lu, Qi-Sheng Feng, Li-Zhen Chen, Chao-Nan Qian, Jin-Xin Bei, Tiebang Kang, Yi-Xin Zeng, (2012) MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle 11 (13):2495-2506

  31. Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45(17):3104–3118

    CAS  PubMed  Google Scholar 

  32. Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S, Roussel MF (2013) Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res 73(23):7068–7078

    CAS  PubMed  Google Scholar 

  33. Neff BA, Voss SG, Schmitt WR, Driscoll CLW, Link MJ, Beatty CW, Kita H (2012) Inhibition of MEK pathway in vestibular schwannoma cell culture. Laryngoscope 122(10):2269–2278

    CAS  PubMed  Google Scholar 

  34. Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death & Differentiation 22(1):6-11

  35. Perry A, Graffeo CS, Carlstrom LP, Raghunathan A, Driscoll CLW, Neff BA, Carlson ML, Parney IF, Link MJ, Van Gompel JJ (2019) Predominance of M1 subtype among tumor-associated macrophages in phenotypically aggressive sporadic vestibular schwannoma. Journal of Neurosurgery:1–9. https://doi.org/10.3171/2019.7.JNS19879

  36. Poenitzsch Strong AM, Setaluri V, Spiegelman VS (2014) microRNA-340 as a modulator of RAS–RAF–MAPK signaling in melanoma. Archives of Biochemistry and Biophysics 563:118-124

  37. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    CAS  PubMed  Google Scholar 

  38. Presneau N, Eskandarpour M, Shemais T, Henderson S, Halai D, Tirabosco R, Flanagan AM (2013) MicroRNA profiling of peripheral nerve sheath tumours identifies miR-29c as a tumour suppressor gene involved in tumour progression. Br J Cancer 108(4):964–972

    CAS  PubMed  Google Scholar 

  39. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pacific Symposium on Biocomputing :455–466

  40. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk S, Desmaze C, Plougastel B (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363(6429):515–521

    CAS  PubMed  Google Scholar 

  41. Sass HCR, Borup R, Alanin M, Nielsen FC, Cayé-Thomasen P, (2017) Gene expression, signal transduction pathways and functional networks associated with growth of sporadic vestibular schwannomas. Journal of Neuro-Oncology 131 (2):283-292

  42. Saydam O, Senol O, Würdinger T et al (2011) miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res 71(3):852–861

    CAS  PubMed  Google Scholar 

  43. Stangerup SE, Caye-Thomasen P (2012) Epidemiology and natural history of vestibular Schwannomas. Otolaryngol Clin N Am 45(2):257–268

    Google Scholar 

  44. Stemmer-Rachamimov AO, Xu L, Gonzalez-Agosti C, Burwick JA, Pinney D, Beauchamp R, Jacoby LB, Gusella JF, Ramesh V, Louis DN (1997) Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 151(6):1649–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Torres-Martin M, Lassaletta L, de Campos JM et al (2013) Global profiling in vestibular Schwannomas shows critical deregulation of MicroRNAs and upregulation in those included in chromosomal region 14q32. PLoS One 8(6):e65868

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Torres-Martin M, Lassaletta L, San-Roman-Montero J et al (2013) Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol 42(3):848–862

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang W, Corrigan-Cummins M, Hudson J et al (2012) MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica 97(4):586–594

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Q, Tang H, Yin S, Dong C (2013) Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 29(5):2046–2052

    CAS  PubMed  Google Scholar 

  49. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    CAS  PubMed  Google Scholar 

  50. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    CAS  Google Scholar 

  51. Wu Z, Huang X, Huang X, Zou Q, Guo Y (2013) The inhibitory role of Mir-29 in growth of breast cancer cells. J Exp Clin Cancer Res 32:98

    PubMed  PubMed Central  Google Scholar 

  52. Xu D, Tan J, Zhou M, Jiang B, Xie H, Nie X, Xia K, Zhou J (2012) Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells. Oncol Lett 4(5):941–946

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang X, Yu H, Lou JR, Zheng J, Zhu H, Popescu N-I, Lupu F, Lind SE, Ding W-Q (2011) MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 286(2):1429–1435

    CAS  PubMed  Google Scholar 

  54. Zhang H, Zhang H, Zhao M et al (2013) MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cell Physiol Biochem 31(1):56–65

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjalte C. R. Sass.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Comments

This is a solid paper on an interesting topic. The fact that not all VS harbor mutations in NF2 means that other factors are involved. Prior to this study, DNA and RNA have been analyzed using different omics approaches. However, prior studies investigating RNA in VS have focused on tumor versus normal controls. In this study, Sass et al. have shed light on the clinically important issue of tumor growth. They utilize an array designed to analyze all miRNAs annotated in miRBase to find several novel miRNAs that might prove important in the future to distinguish the indolent from the growing VS.

Morten Lund-Johansen

Bergen, Norway

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Tumor - Schwannoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sass, H.C.R., Hansen, M., Borup, R. et al. Tumor miRNA expression profile is related to vestibular schwannoma growth rate. Acta Neurochir 162, 1187–1195 (2020). https://doi.org/10.1007/s00701-020-04238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-020-04238-4

Keywords

Navigation