Skip to main content
Log in

LMWPTP modulates the antioxidant response and autophagy process in human chronic myeloid leukemia cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the last decade, several reports highlight the importance of the low molecular weight protein tyrosine phosphatase (LMWPTP) in cancer aggressiveness and resistance. Specifically, in chronic myeloid leukemia, we have reported that high expression of the LMWPTP maintains Src and Bcr-Abl kinases in an activated status and the glucose metabolism is directed to lactate production and, in turn, favor the pentoses pathway (one of the key process for antioxidant and protective responses). In this present study, we investigated the possible correlation between the LMWPTP and autophagy. In resistant chronic myeloid leukemia cells, the antioxidant response is supported by the glycolytic metabolism and antioxidant enzymes such as SOD and catalase, both favored by the LMWPTP. Therefore, when the cells were challenged by hydrogen peroxide treatment, the LMWPTP level goes down as well as SOD, and in turn, autophagy process was stimulated. The findings presented here reveal a novel aspect by which LMWPTP cooperates for the resistance of CML towards stressor stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CML:

Chronic myeloid leukemia

LMWPTP:

Low molecular weight protein tyrosine phosphatase

ROS:

Reactive oxygen species

References

  1. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegue E (2013) Foxo3a directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327. https://doi.org/10.1038/nature11895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothe K, Lin H, Lin KB, Leung A, Wang HM, Malekesmaeili M, Brinkman RR, Forrest DL, Gorski SM, Jiang X (2014) The core autophagy protein atg4b is a potential biomarker and therapeutic target in cml stem/progenitor cells. Blood 123:3622–3634. https://doi.org/10.1182/blood-2013-07-516807

    Article  CAS  PubMed  Google Scholar 

  3. Baquero P, Dawson A, Helgason GV (2019) Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS J 286(7):1271–1283. https://doi.org/10.1111/febs.14659

    Article  CAS  PubMed  Google Scholar 

  4. Watson AS, Riffelmacher T, Stranks A, Williams O, De Boer J, Cain K, MacFarlane M, McGouran J, Kessler B, Khandwala S, Chowdhury O, Puleston D, Phadwal K, Mortensen M, Ferguson D, Soilleux E, Woll P, Jacobsen SE, Simon AK (2015) Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov 1:15008. https://doi.org/10.1038/cddiscovery.2015.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in philadelphia chromosome-positive cells, including primary cml stem cells. J Clin Investig 119:1109–1123. https://doi.org/10.1172/JCI35660

    Article  CAS  PubMed  Google Scholar 

  6. Jin J, Britschgi A, Schlafli AM, Humbert M, Shan-Krauer D, Batliner J, Federzoni EA, Ernst M, Torbett BE, Yousefi S, Simon HU, Tschan MP (2018) Low autophagy (atg) gene expression is associated with an immature aml blast cell phenotype and can be restored during aml differentiation therapy. Oxid Med Cell Lonzgev. https://doi.org/10.1155/2018/1482795

    Article  Google Scholar 

  7. Rudat S, Pfaus A, Cheng YY, Holtmann J, Ellegast JM, Buhler C, Marcantonio DD, Martinez E, Gollner S, Wickenhauser C, Müller-Tidow C, Lutz C, Bullinger L, Milsom MD, Sykes SM, Fröhling S, Scholl C (2018) Ret-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia. Leukemia 32:2189–2202. https://doi.org/10.1038/s41375-018-0102-4

    Article  CAS  PubMed  Google Scholar 

  8. Souza AC, Azoubel S, Queiroz KC, Peppelenbosch MP, Ferreira CV (2009) From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cell Mol Life Sci 66(7):1140–1153. https://doi.org/10.1007/s00018-008-8501-8

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira PA, Ruela de Sousa RR, Queiroz KCS, Souza ACS, Milani R, Pilli RA, Peppelenbosch MP, Hertog J, Ferreira CV (2012) Knocking down low molecular weight protein tyrosine phosphatase (LMW-PTP) reverts chemoresistance through inactivation of Src and Bcr-Abl proteins. PLoS ONE 7(9):e44312. https://doi.org/10.1371/journal.pone.0044312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faria AVS, Tornatore TF, Milani R, Queiroz KCS, Sampaio IH, Fonseca EMB, Rocha-Brito KJP, Santos TO, Silveira LR, Peppelenbosch MP, Ferreira-Halder CV (2017) Oncophosphosignaling favors a glycolytic phenotype in human drug resistant leukemia. J Cell Biochem 118(11):3846–3854

    Article  CAS  Google Scholar 

  11. Hoekstra E, Kodach LL, Das AM, Ruela-de-Sousa RR, Ferreira CV, Hardwick JC, van der Woude CJ, Peppelenbosch MP, Ten Hagen TL, Fuhler GM (2015) Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget 6(10):8300

    Article  Google Scholar 

  12. Ruela-de-Sousa RR, Hoekstra E, Hoogland AM, Souza Queiroz KC, Peppelenbosch MP, Stubbs AP, Pelizzaro-Rocha K, van Leenders GJ, Jenster G, Aoyama H, Ferreira CV, Fuhler GM (2016) Low-molecular-weight protein tyrosine phosphatase predicts prostate cancer outcome by increasing the metastatic potential. Eur Urol 69(4):710–719. https://doi.org/10.1016/j.eururo.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  13. Caselli A, Taddei ML, Bini C, Paoli P, Camici G, Manao G, Cirri P, Ramponi G (2007) Low molecular weight protein tyrosine phosphatase and caveolin-1: interaction and isoenzyme-dependent regulation. Biochemistry 46(21):6383–6392

    Article  CAS  Google Scholar 

  14. Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD (2016) Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 27(13):2090–2106. https://doi.org/10.1091/mbc.E15-11-0756

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nah J, Yoo SM, Jung S, Jeong EI, Park M, Kaang BK, Jung YK (2017) Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. Cell Death Dis 8(5):e2822. https://doi.org/10.1038/cddis.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rumjanek VM, Trindade GS, Wagner-Souza K, de Oliveira MC, MarquesSantos LF, Maia RC, Capella MA (2001) Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. An Acad Bras Cienc 73:57–69. https://doi.org/10.1590/s0001-37652001000100007

    Article  CAS  PubMed  Google Scholar 

  17. Daflon-Yunes N, Pinto-Silva FE, Vidal RS, Novis BF, Berguetti T, Lopes RR, Polycarpo C, Rumjanek VM (2013) Characterization of a multidrug-resistant chronic myeloid leukemia cell line presenting multiple resistance mechanisms. Mol Cell Biochem 383(1–2):123–135. https://doi.org/10.1007/s11010-013-1761-0

    Article  CAS  PubMed  Google Scholar 

  18. Jin Y, Cai Q, Shenoy AK, Lim S, Zhang Y, Charles S, Tarrash M, Fu X, Kamarajugadda S, Trevino JG, Tan M, Lu J (2016) Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation. Oncotarget 7(18):25113. https://doi.org/10.18632/oncotarget.7159

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baquero P, Dawson A, Mukhopadhyay A, Kuntz EM, Mitchell R, Olivares O, Ianniciello SMT, Dunn K, Nicastri MC, Winkler JD, Michie AM, Ryan KM, Halsey C, Gottlieb E, Keaney EP, Murphy LO, Amaravadi RK, Holyoake TL, Helgason GV (2019) Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia 33(4):981–994. https://doi.org/10.1038/s41375-018-0252-4

    Article  CAS  PubMed  Google Scholar 

  20. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  Google Scholar 

  21. Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z (2009) Autophagy is upregulated in rats with status epilepticus and partly inhibited by Vitamin E. Biochem Biophys Res Commun 379:949–953

    Article  CAS  Google Scholar 

  22. Diederen JHB, Peppelenbosch MP, Vullings HGB (1992) Aging adipokinetic cells in locusta-migratoria—an Ultrastructural Morphometric Study. Cell Tissue Res 268:117–121

    Article  Google Scholar 

  23. Queiroz KC, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, Diks SH, Spek CA, Ferreira CV, Peppelenbosch MP (2012) Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse. PLoS ONE 7(10):e45362. https://doi.org/10.1371/journal.pone.0045362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided during the research from Sao Paulo Research Foundation (FAPESP)—(Grants 2015/20412–7; 2017/08119–8; 2018/03593–6), Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq). The authors are grateful for the equipment support from Laboratório Multiusuário de Biologia Celular e Molecular, Institute of Biology, University of Campinas. We thank the staff of the Life Sciences Core Facility (LaCTAD) from University of Campinas (UNICAMP), for the Cell Biology analysis.

Funding

This work was supported by the Sao Paulo Research Foundation (FAPESP) under Grants 2017/08119-8 (AVSF), 2018/03593-6 (SPC), and 2015/20412-7 (CVFH); This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

The head group leader CVFH contributed for the article conceptualization; AVSF, SPC, PSFO, KCSQ, MPP, and CVFH were responsible to design the methodology; AVSF, SPC, PSFO, and KCSQ performed the research investigation; AVSF was responsible for the original writing; SPC, PSFO, KCSQ, and CVFH were responsible for reviewing and editing; MPP and CVFH supervised the work; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Carmen V. Ferreira-Halder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2020_3690_MOESM1_ESM.tif

Supplementary file1 (TIF 62724 kb)—Supplemental figure 1. Histograms for Western blots represents estern blot from Figure 1 (A), Figure 2 (B) and Figure 3 (C,D). It was considered the housekeeping control for total proteins and the ratio between phosphorylated/total forms for phosphorylated proteins. Statistical analysis: Figure 1 (A), P<0.05 K562 vs. Lucena-1; Figure 2 (B), P<0.05 Lucena-1 shScramble vs. Lucena-1 shACP1 and for figure 3 (C,D), P<0.05 Control vs. H2O2 treatments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, A.V.S., Clerici, S.P., de Souza Oliveira, P.F. et al. LMWPTP modulates the antioxidant response and autophagy process in human chronic myeloid leukemia cells. Mol Cell Biochem 466, 83–89 (2020). https://doi.org/10.1007/s11010-020-03690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03690-1

Keywords

Navigation