Skip to main content
Log in

Growth Stimulation Activity of Alginate-Derived Oligosaccharides with Different Molecular Weights and Mannuronate/Guluronate Ratio on Hordeum vulgare L

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The differentiated components of alginate-derived oligosaccharides (AOS) lead to different activities on plant. Optimizing AOS use efficiency is, therefore, of major importance for the implementation of precision agriculture. Effects of AOS on biophysical characteristics and growth and development of barley (Hordeum vulgare L.) have been investigated. The experiments were conducted by soaking the seeds in AOS solutions with different molecular weights and Mannuronate/Guluronate ratio. The results showed that depending on their components, AOS stimulated the growth of seedlings and roots differently. AOS with low MW (500–3000 Da) and higher M/G ratio (> 1) had better promotion on the plant. The promoting effects on seedlings and roots were not an exact match. Our results suggested that the promotion effects of AOS on seedlings might be caused by the stimulation on photosynthesis and the roots growth were promoted probably due to the enhanced absorption activity. In gene level, we demonstrated that AOS induced the expression of development-related genes including auxin response factor and mitogen-activated protein kinase, thereby promoting the growth. Our research may provide a basis for more targeted and precise use of AOS in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aftab T, Khan MMA, Idrees M et al (2011) Enhancing the growth, photosynthetic capacity and artemisinin content in Artemisia annua L. by irradiated sodium alginate. Radiat Phys Chem 80(7), 833–836

    Article  CAS  Google Scholar 

  • Aftab T, Khan MMA, Naeem M et al (2014) Effect of irradiated sodium alginate and phosphorus on biomass and artemisinin production in Artemisia annua. Carbohydr Polym 110:396–404

    Article  CAS  PubMed  Google Scholar 

  • Aubel GV, Buonatesta R, Cutsem PV (2014) COS-OGA: a novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Prot 65(4):129–137

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Cabrera J, Wégria G, Onderwater R et al (2013) Practical use of oligosaccharins in agriculture. Acta Hortic 1009:195–211

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Di T, Chen G, Sun Y et al (2017) Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J Funct Foods 28:64–75

    Article  CAS  Google Scholar 

  • El-Mohdy HLA (2017) Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arab J Chem 10(S1):S431–S438

    Article  CAS  Google Scholar 

  • Fry SC, Aldington S, Hetherington PR et al (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 103(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González A, Castro J, Vera J et al (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell divison. J Plant Growth Regul 32(2):443–448

    Article  CAS  Google Scholar 

  • Griffiths CA, Sagar R, Geng Y et al (2016) Chemical intervention in plant sugar signalling increases yield and resilience. Nature 540:574–578

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, et al (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (Ed) Advances in agronomy, Vol 129. Academic Press, Cambridge, pp 141–174

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Silva JATD, et al (2012) Plant response and tolerance to abiotic oxidative stress, antioxidant defense is a key factor. Crop stress and its management, perspectives and strategies. Springer, Berlin

    Google Scholar 

  • Hien NQ, Nagasawa N, Tham LX et al (2000) Growth-promotion of plants with depolymerized alginates by irradiation. Radiat Phys Chem 59:97–101

    Article  CAS  Google Scholar 

  • Idrees M, Dar TA, Naeem M et al (2015) Effects of gamma-irradiated sodium alginate on lemongrass, field trials monitoring production of essential oil. Ind Crops Prod 63:269–275

    Article  CAS  Google Scholar 

  • Ito Y, Kaku H, Shibuya N (1997) Identification of high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12(2):347–356

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki KI, Matsubara Y (2000) Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotechnol Biochem 64(5):1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Costa C, Souleimanov A et al (2011) Response of arabidopsis thaliana aroots to lipo-chitooligosaccharide from Bradyrhizobium japonicum and other chitin-like compounds. Plant Growth Regul 63(3):243–249

    Article  CAS  Google Scholar 

  • Kollárová K, Vatehová Z, Slováková L et al (2010) Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root. Plant Physiol Biochem 48(6):401–406

    Article  PubMed  CAS  Google Scholar 

  • Kučerová D, Kollárová K, Vatehová Z et al (2015) Interaction of galactoglucomannan oligosaccharides with auxin involves changes in flavonoid accumulation. Plant Physiol Biochem 98:155–161

    Article  PubMed  CAS  Google Scholar 

  • Kučerová D, Kollárová K, Vatehová Z et al (2016) Interaction of galactoglucomannan oligosaccharides with auxin involves changes in flavonoid accumulation. Plant Physiol Biochem 98:155–161

    Article  PubMed  CAS  Google Scholar 

  • Laporte D, Vera J, Chandía NP et al (2007) Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. J Appl Phycol 19(1):79–88

    Article  CAS  Google Scholar 

  • Li X (2013) Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem 141(3):2083–2088

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jiang X, Guan H, et al (2011) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res 346(6), 794–800

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xiaoyun W, Xinpeng L et al (2018) Alginate-derived oligosaccharides promote water stress tolerance in cucumber (Cucumis sativus, L.). Plant Physiol Biochem 130:80–88

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Jiang X, Guan H et al (2009) Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato. J Ocean Univ China 8(3):303–311

    Article  CAS  Google Scholar 

  • Liu H, Zhang YH, Yin H et al (2013) Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem 62:33–40

    Article  CAS  PubMed  Google Scholar 

  • Luan LQ, Nagasawa N, Ha VTT et al (2009) Enhancement of plant growth stimulation activity of irradiated alginate by fractionation. Radiat Phys Chem 78(9):796–799

    Article  CAS  Google Scholar 

  • Ma LJ, Li XM, Bu N et al (2010a) An alginate-derived oligosaccharide enhanced wheat tolerance to cadmium stress. Plant Growth Regul 62(1):71–76

    Article  CAS  Google Scholar 

  • Ma LJ, Zhang Y, Bu N et al (2010b) Alleviation effect of alginate-derived oligosaccharides onVicia fabaRoot tip cells damaged by cadmium. Bull Environ Contam Toxicol 84(2):161–164

    Article  CAS  PubMed  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases, evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177

    Article  CAS  PubMed  Google Scholar 

  • Natsume M, Kamo Y, Hirayama M et al (1994) Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydr Res 258:187–197

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Villarreal M, Aispuro-Hernández E, Vargas-Arispuro I et al (2012) Plant cell wall polymers, function, structure and biological activity of their derivatives. In: Souza GA (ed) Polymerization. InTech, Rijeka, pp 63–86

    Google Scholar 

  • Patrick JD (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  CAS  Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, et al (2013) The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70(2), 159–173

    Article  CAS  Google Scholar 

  • Qiu ZB, Liu X, Tian XJ et al (2008) Effects of CO2 laser pretreatment on drought stress resistance in wheat. J Photochem Photobiol B Biol 90(1):17–25

    Article  CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO et al (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plantarum 35(4):1039–1050

    Article  CAS  Google Scholar 

  • Richterová-Kučerová D, Kollárová K, Zelko I et al (2012) How do galactoglucomannan oligosaccharides regulate cell growth in epidermal and cortical tissues of mung bean seedlings? Plant Physiol Biochem 57:154–158

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Kumar V, Singh R et al (2016) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf 133:195–201

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124(1):183–192

    Article  CAS  PubMed  Google Scholar 

  • Sumera Anwar HL, Kuai J et al (2017) Soaking seeds of winter rapeseed with Quizalofop-P-Ethyl alters plant growth and improves yield in a rice-rapeseed cropping system. Field Crops Res 208:11–17

    Article  Google Scholar 

  • Takahashi Y, Soyano T, Kosetsu K et al (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51(10):1766–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Zhou Q, Chu H et al (2011) Characterization of alginase and elicitor-active oligosaccharides from Gracilibacillus A7 in alleviating salt stress for Brassica campestris L. J Agric Food Chem 59(14):7896–7901

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin, regulation, action, and interaction. Ann Bot 95(5):707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Wu X, Wang Q, et al (2014) Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure–activity relationships. J Agric Food Chem 62(14), 3168–3176

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Yan WJ, Li XF (2009) Experimental guidance of plant physiology. Higher Education Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang Y, Zhang G, Liu L, et al (2011) The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism of brassica campestrisl. var. utilistsen et lee. Plant Growth Regul 64(2), 193–202

    Article  CAS  Google Scholar 

  • Zhang Y, Yin H, Zhao X et al (2014) The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr Polym 113:446–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Su J, Zhang Y et al (2018) Conveying endogenous and exogenous signals, MAPK cascades in plant growth and defense. Curr Opin Plant Biol 45(Pt A):1–10

    PubMed  Google Scholar 

  • Zhao FY, Hu F, Zhang SY et al (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20(8):5449–5460

    Article  CAS  Google Scholar 

  • Zou P, Li KC, Liu S et al (2015) Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydr Polym 126:62–69

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances [NO. SKL-BASS1701].

Author information

Authors and Affiliations

Authors

Contributions

Yang J R and Shen Z P performed the experiments and analyzed the data, interpreted the results, and drafted the manuscript. Sun Z Y and Wang P provided writing assistance. Jiang X L and Shen Z P designed the experiments, revised the manuscript, and supervised the project. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Zhaopeng Shen or Xiaolu Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Shen, Z., Sun, Z. et al. Growth Stimulation Activity of Alginate-Derived Oligosaccharides with Different Molecular Weights and Mannuronate/Guluronate Ratio on Hordeum vulgare L. J Plant Growth Regul 40, 91–100 (2021). https://doi.org/10.1007/s00344-020-10078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10078-4

Keywords

Navigation