Skip to main content
Log in

Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Key message

The non-intrinsic ABC proteins ABCI20 and ABCI21 are induced by light under HY5 regulation, localize to the ER, and ameliorate cytokinin-driven growth inhibition in young Arabidopsis thaliana seedlings.

Abstract

The plant ATP-binding cassette (ABC) I subfamily (ABCIs) comprises heterogeneous proteins containing any of the domains found in other ABC proteins. Some ABCIs are known to function in basic metabolism and stress responses, but many remain functionally uncharacterized. ABCI19, ABCI20, and ABCI21 of Arabidopsis thaliana cluster together in a phylogenetic tree, and are suggested to be targets of the transcription factor ELONGATED HYPOCOTYL 5 (HY5). Here, we reveal that these three ABCIs are involved in modulating cytokinin responses during early seedling development. The ABCI19, ABCI20 and ABCI21 promoters harbor HY5-binding motifs, and ABCI20 and ABCI21 expression was induced by light in a HY5-dependent manner. abci19 abci20 abci21 triple and abci20 abci21 double knockout mutants were hypersensitive to cytokinin in seedling growth retardation assays, but did not show phenotypic differences from the wild type in either control medium or auxin-, ABA-, GA-, ACC- or BR-containing media. ABCI19, ABCI20, and ABCI21 were expressed in young seedlings and the three proteins interacted with each other, forming a large protein complex at the endoplasmic reticulum (ER) membrane. These results suggest that ABCI19, ABCI20, and ABCI21 fine-tune the cytokinin response at the ER under the control of HY5 at the young seedling stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht T, Argueso CT (2017) Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann Bot 119:725–735

    CAS  PubMed  Google Scholar 

  • Ali T, Bednarska J, Vassilopoulos S, Tran M, Diakonov IA, Ziyadeh-Isleem A, Guicheney P, Gorelik J, Korchev YE, Reilly MM, Bitoun M, Shevchuk A (2019) Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin. FASEB J 33:8504–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222

    Article  CAS  PubMed  Google Scholar 

  • Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res Int 22:17672–17682

    Article  CAS  PubMed  Google Scholar 

  • Caesar K, Thamm AM, Witthoft J, Elgass K, Huppenberger P, Grefen C, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CS, Li YH, Chen LT, Chen WC, Hsieh WP, Shin J, Wu SH (2008) LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J 54:205–219

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Article  CAS  Google Scholar 

  • Do THT, Martinoia E, Lee Y (2018) Functions of ABC transporters in plant growth and development. Curr Opin Plant Biol 41:32–38

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Zhai Z, Yan C, Xu C (2015) Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids. Plant Cell 27:2941–2955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gangappa SN, Botto JF (2016) The multifaceted roles of HY5 in plant growth and development. Mol Plant 9:1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen J, Dai X, Zhang D, Zhao Y (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171:1794–1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Yamazaki T (2002) Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14:2015–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CF, Yamaji N, Ma JF (2010) Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol 153:1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Yim S, Do THT, Kang J, Lee Y (2018) Arabidopsis thaliana Raf22 protein kinase maintains growth capacity during postgerminative growth arrest under stress. Plant Cell Environ 41:1565–1578

    Article  CAS  PubMed  Google Scholar 

  • Imamura A, Kiba T, Tajima Y, Yamashino T, Mizuno T (2003) In vivo and in vitro characterization of the ARR11 response regulator implicated in the His-to-Asp phosphorelay signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:122–131

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Rolff E, Spruit C (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Zeitschrift für Pflanzenphysiologie 100:147–160

    Article  Google Scholar 

  • Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H (2012) Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-Zeatin-O-glucosyltransferase in rice. Plant Physiol 160:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Chiang YC, Pan J, Chen J, Salvadore C, Audino DC, Denis CL (2001) Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276:7541–7548

    Article  CAS  PubMed  Google Scholar 

  • Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmulling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66:1851–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282:35945–35953

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Divol F, Bechtold N, Vavasseur A, Nussaume L, Forestier C (2006) Molecular characterization of three Arabidopsis soluble ABC proteins which expression is induced by sugars. Plant Sci 171:84–90

    Article  CAS  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–d360

    Article  CAS  PubMed  Google Scholar 

  • Moller SG, Kunkel T, Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15:90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novak O, Werner T (2018) The cytokinin oxidase/dehydrogenase CKX1 is a membrane-bound protein requiring homooligomerization in the endoplasmic reticulum for its cellular activity. Plant Physiol 176:2024–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura K, Goh T, Toyokura K, Kasahara H, Takebayashi Y, Mimura T, Fukaki H (2013) GNOM/FEWER ROOTS is required for the establishment of an auxin response maximum for Arabidopsis lateral root initiation. Plant Cell Physiol 54:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin SL, Xie AG, Bonato MC, McLaughlin CS (1990) Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiae. J Biol Chem 265:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Beveridge CA (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayapuram N, Hagenmuller J, Grienenberger JM, Giege P, Bonnard G (2007) AtCCMA interacts with AtCcmB to form a novel mitochondrial ABC transporter involved in cytochrome c maturation in Arabidopsis. J Biol Chem 282:21015–21023

    Article  CAS  PubMed  Google Scholar 

  • Roston RL, Gao J, Murcha MW, Whelan J, Benning C (2012) TGD1, -2, and -3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem 287:21406–21415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Ma Q, Mao T (2015) Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE5 in etiolated hypocotyl elongation. Plant Physiol 169:325–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22:259–271

    Article  CAS  Google Scholar 

  • Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49:428–441

    Article  CAS  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • Vyroubalova S, Vaclavikova K, Tureckova V, Novak O, Smehilova M, Hluska T, Ohnoutkova L, Frebort I, Galuszka P (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Anderson NS, Benning C (2013) The phosphatidic acid binding site of the Arabidopsis trigalactosyldiacylglycerol 4 (TGD4) protein required for lipid import into chloroplasts. J Biol Chem 288:4763–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zheng Y, Li H, Luo X, He Z, Cao S, Shi Y, Zhao Q, Xue Y, Zuo Z, Ren J (2016) GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Sci Rep 6:28249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XM, Moller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101:9143–9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XM, Adams S, Chua NH, Moller SG (2005) AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem 280:6648–6654

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F, Andersson MX, Holm M (2014) Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet 10:e1004197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang ZB, Liu G, Liu J, Zhang B, Meng W, Muller B, Ding Z (2017) Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 18:1213–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo YJ, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Hwang I (2016) Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol Plant 9:1004–1017

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, Wang X (2015) Gibberellic Acid-Stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol 169:2288–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong C, Xu H, Ye S, Zhang S, Wang X (2016) Arabidopsis seed germination assay with gibberellic acid. Bio-Protocol 6:e2005

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program NRF‐2018R1A2A1A05018173 (to Y.L.) through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Information and Communication Technology), a Grant from NRF of Korea NRF-2016R1D1A1B03933534 (to J.-U.H.,), a Grant-in-Aid for Scientific Research (A) (26252011) from Japan (to M.M.), and NIH Grant GM114660 (to YZ).

Author information

Authors and Affiliations

Authors

Contributions

J-UH and YL designed the research; AK, DK and JJ performed the research; YY immunolocalized endogenous ABCI20; MM contributed sucrose gradient fractionation; JC and YZ generated CRISPR/Cas9-based knockout mutants; AK, EM, J-UH and YL wrote the article.

Corresponding author

Correspondence to Youngsook Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Jeong Sheop Shin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 17543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A., Chen, J., Khare, D. et al. Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Rep 39, 473–487 (2020). https://doi.org/10.1007/s00299-019-02503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02503-0

Keywords

Navigation