Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of drug-related movement disorders, an umbrella review of meta-analyses

Abstract

This umbrella review investigates which genetic factors are associated with drug-related movement disorders (DRMD), in an attempt to provide a synthesis of published evidence of candidate-gene studies. To identify all relevant meta-analyses, a literature search was performed. Titles and abstracts were screened by two authors and the methodological quality of included meta-analyses was assessed using ‘the assessment of multiple systematic reviews’ (AMSTAR) critical appraisal checklist. The search yielded 15 meta-analytic studies reporting on genetic variations in 10 genes. DRD3, DRD2, CYP2D6, HTR2A, COMT, HSPG2 and SOD2 genes have variants that may increase the odds of TD. However, these findings do not concur with early genome-wide association studies. Low-power samples are susceptible to ‘winner’s curse’, which was supported by diminishing meta-analytic effects of several genetic variants over time. Furthermore, analyses pertaining to the same genetic variant were difficult to compare due to differences in patient populations, methods used and the choice of studies included in meta-analyses. In conclusion, DRMD is a complex phenotype with multiple genes that impact the probability of onset. More studies with larger samples using other methods than by candidate genes, are essential to developing methods that may predict the probability of DRMD. To achieve this, multiple research groups need to collaborate and a DRMD genetic database needs to be established in order to overcome winner’s curse and publication bias, and to allow for stratification by patient characteristics. These endeavours may help the development of a test with clinical value in the prevention and treatment of DRMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Owens DGC. A guide to the extrapyramidal side effects of anti-psychotic drugs. New York: Cambridge University Press UK; 2014.

  2. Factor SA. Drug induced movement disorders malden, Mass: Blackwell Futura; 2005.

  3. van Harten PN, Kahn RS. Tardive dystonia. Schizophr Bull. 1999;25:741–8.

    Article  PubMed  Google Scholar 

  4. Lambert M, Conus P, Eide P, Mass R, Karow A, Moritz S, et al. Impact of present and past antipsychotic side effects on attitude toward typical antipsychotic treatment and adherence. Eur Psychiatry. 2004;19:415–22.

    Article  CAS  PubMed  Google Scholar 

  5. Casey DE. Implications of the CATIE trial on treatment: extrapyramidal symptoms. CNS Spectr. 2006;11:25–31.

    Article  PubMed  Google Scholar 

  6. Correll CU, Schenk EM. Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry. 2008;21:151–6.

    Article  PubMed  Google Scholar 

  7. Taylor D. Antipsychotic polypharmacy—confusion reigns. Psychiatrist; 2010;34:41–43.

  8. Mentzel TQ, Lieverse R, Bloemen O, Viechtbauer W, van Harten PN, Genetic Risk and Outcome of Psychosis (GROUP) Investigators. et al. High incidence and prevalence of drug-related movement disorders in young patients with psychotic disorders. J Clin Psychopharmacol. 2017;37:231–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bakker PR, de Groot IW, van Os J, van Harten PN. Long-stay psychiatric patients: a prospective study revealing persistent antipsychotic-induced movement disorder. PLoS ONE. 2011;6:e25588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Harten PN, Matroos GE, Hoek HW, Kahn RS. The prevalence of tardive dystonia, tardive dyskinesia, parkinsonism and akathisia The Curacao Extrapyramidal Syndromes Study: I. Schizophr Res. 1996;19:195–203.

    Article  PubMed  Google Scholar 

  11. Glazer WM, Morgenstern H, Doucette J. Race and tardive dyskinesia among outpatients at a CMHC. Hosp Community Psychiatry. 1994;45:38–42.

    CAS  PubMed  Google Scholar 

  12. Halstead SM, Barnes TR, Speller JC. Akathisia: prevalence and associated dysphoria in an in-patient population with chronic schizophrenia. Br J Psychiatry. 1994;164:177–83.

    Article  CAS  PubMed  Google Scholar 

  13. Sachse C, Brockmoller J, Bauer S, Roots I. Functional significance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharm. 1999;47:445–9.

    Article  CAS  Google Scholar 

  14. Sachdev PS. Neuroleptic-induced movement disorders: an overview. Psychiatr Clin North Am. 2005;28:255–74.

    Article  PubMed  Google Scholar 

  15. Tenback DE, van Harten PN, van Os J. Non-therapeutic risk factors for onset of tardive dyskinesia in schizophrenia: a meta-analysis. Mov Disord. 2009;24:2309–15.

    Article  PubMed  Google Scholar 

  16. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373:31–41.

    Article  CAS  PubMed  Google Scholar 

  17. Fujimaki K, Morinobu S, Yamashita H, Takahashi T, Yamawaki S. Predictors of quality of life in inpatients with schizophrenia. Psychiatry Res. 2012;197:199–205.

    Article  PubMed  Google Scholar 

  18. Schouten HJ, Knol W, Egberts TC, Schobben AF, Jansen PA, van Marum RJ. Quality of life of elderly patients with antipsychotic-induced parkinsonism: a cross-sectional study. J Am Med Dir Assoc. 2012;13:82 e81–85.

    Google Scholar 

  19. Haddad PM, Dursun SM. Neurological complications of psychiatric drugs: clinical features and management. Hum Psychopharmacol. 2008;23:15–26. Jan

    Article  PubMed  Google Scholar 

  20. Ballesteros J, Gonzalez-Pinto A, Bulbena A. Tardive dyskinesia associated with higher mortality in psychiatric patients: results of a meta-analysis of seven independent studies. J Clin Psychopharmacol. 2000;20:188–94.

    Article  CAS  PubMed  Google Scholar 

  21. Chong SA, Tay JA, Subramaniam M, Pek E, Machin D. Mortality rates among patients with schizophrenia and tardive dyskinesia. J Clin Psychopharmacol. 2009;29:5–8.

    Article  PubMed  Google Scholar 

  22. Dean CE, Thuras PD. Mortality and tardive dyskinesia: long-term study using the US National Death Index. Br J Psychiatry. 2009;194:360–4.

    Article  PubMed  Google Scholar 

  23. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998;779:58–74.

    Article  CAS  PubMed  Google Scholar 

  24. Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH, et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA. 1996;93:1945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. GCCC Psychiatric, Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV, et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry. 2009;166:540–56.

    Article  Google Scholar 

  26. Aberg K, Adkins DE, Bukszár J, Webb BT, Caroff SN, Miller DD, et al. Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry. 2010;67:279–82.

    Article  PubMed  CAS  Google Scholar 

  27. Alkelai A, Greenbaum L, Rigbi A, Kanyas K, Lerer B. Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients. Psychopharmacol (Berl). 2009;206:491–9.

    Article  CAS  Google Scholar 

  28. Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B. Evidence for association of the GLI2 gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord. 2010;25:2809–17.

    Article  PubMed  Google Scholar 

  29. Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T, et al. Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet Genomics. 2008;18:317–23.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka S, Syu A, Ishiguro H, Inada T, Horiuchi Y, Ishikawa M, et al. DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J. 2013;13:27–34.

    Article  CAS  PubMed  Google Scholar 

  31. Reynolds GP. The impact of pharmacogenetics on the development and use of antipsychotic drugs. Drug Disco Today. 2007;12:953–9.

    Article  CAS  Google Scholar 

  32. Ohmori O, Shinkai T, Hori H, Matsumoto C, Nakamura J. A perspective on molecular genetic studies of tardive dyskinesia: one clue for individualized antipsychotic drug therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:581–6.

    Article  CAS  PubMed  Google Scholar 

  33. Lerer B, Segman RH. Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin Neurosci. 2006;8:85–94.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lencz T, Malhotra AK. Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin Neurosci. 2009;11:405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang JP, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol. 2011;7:9–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lanning RK, Zai CC, Muller DJ. Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics. 2016;17:1339–51.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao R, Boehnke M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol. 2009;33:453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Poirier JG, Faye LL, Dimitromanolakis A, Paterson AD, Sun L, Bull SB. Resampling to address the winner’s curse in genetic association analysis of time to event. Genet Epidemiol. 2015;39:518–28.

    Article  PubMed  PubMed Central  Google Scholar 

  39. PROSPERO. The genetics of drug-related movement disorders—an umbrella review of meta analyses; 2017. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=69634.

  40. Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry. 2008;13:544–56.

    Article  CAS  PubMed  Google Scholar 

  41. Fleeman N, Dundar Y, Dickson R, Jorgensen A, Pushpakom S, McLeod C, et al. Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses. Pharmacogenomics J. 2011;11:1–14.

    Article  CAS  PubMed  Google Scholar 

  42. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005;15:151–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ozdemir V, Aklillu E, Mee S, Bertilsson L, Albers LJ, Graham JE, et al. Pharmacogenetics for off-patent antipsychotics: reframing the risk for tardive dyskinesia and access to essential medicines. Expert Opin Pharmacother. 2006;7:119–33.

    Article  CAS  PubMed  Google Scholar 

  44. Lerer B, Segman RH, Tan EC. Pharmacogenetics of psychotropic drugs. 2002 ed. Cambridge: Cambridge University Press; 2002.

  45. Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res. 2006;83:185–92.

    Article  PubMed  Google Scholar 

  46. Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004;23:540–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zai CC, De Luca V, Hwang RW, Voineskos A, Muller DJ, Remington G, et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007;12:794–5.

    Article  CAS  PubMed  Google Scholar 

  48. Cadet JL, Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann N Y Acad Sci. 1989;570:176–85.

    Article  CAS  PubMed  Google Scholar 

  49. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005;15:151–158. https://doi.org/10.1097/01213011-200503000-00003.

  50. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.

    Article  CAS  PubMed  Google Scholar 

  51. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.

    Article  CAS  PubMed  Google Scholar 

  52. Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet. 2000;26:480–3.

    Article  CAS  PubMed  Google Scholar 

  53. Syu A, Ishiguro H, Inada T, Horiuchi Y, Tanaka S, Ishikawa M, et al. Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology. 2010;35:1155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Namipashaki A, Razaghi-Moghadam Z, Ansari-Pour N. The essentiality of reporting hardy-weinberg equilibrium calculations in population-based genetic association studies. Cell J Summer. 2015;17:187–92.

    Google Scholar 

  56. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R, et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology. 2002;27:105–19.

    Article  CAS  PubMed  Google Scholar 

  57. Utsunomiya K, Shinkai T, Sakata S, Yamada K, Chen HI, De Luca V, et al. Genetic association between the dopamine D3 receptor gene polymorphism (Ser9Gly) and tardive dyskinesia in patients with schizophrenia: a reevaluation in East Asian populations. Neurosci Lett. 2012;507:52–56.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai HT, North KE, West SL, Poole C. The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:57–66.

    CAS  PubMed  Google Scholar 

  59. Zai CC, Tiwari AK, Müller DJ, De Luca V, Shinkai T, Shaikh S, et al. The catechol-O-methyl-transferase gene in tardive dyskinesia. World J Biol Psychiatry. 2010;11:803–12.

    Article  PubMed  Google Scholar 

  60. Lv Z, Rong B, Tong X, Li X, Chen X, Wang X, et al. The association between COMT Val158Met gene polymorphism and antipsychotic-induced tardive dyskinesia risk. Int J Neurosci. 2016;126:1044–50.

    Article  CAS  PubMed  Google Scholar 

  61. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN, et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol. 2005;8:411–25.

    Article  CAS  PubMed  Google Scholar 

  62. Galecki P, Pietras T, Szemraj J. Manganese superoxide dismutase gene (MnSOD) polimorphism in schizophrenics with tardive dyskinesia from central Poland. Psychiatr Pol. 2006;40:937–48.

    PubMed  Google Scholar 

  63. Pae CU, Yoon SJ, Patkar A, Kim JJ, Jun TY, Lee C, et al. Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism and mood disorders: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1326–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zai CC, Tiwari AK, Basile V, de Luca V, Müller DJ, Voineskos AN, et al. Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:50–56.

    Article  CAS  PubMed  Google Scholar 

  65. Wang DF, Cao B, Xu MY, Liu YQ, Yan LL, Liu R, et al. Meta-analyses of manganese superoxide dismutase activity, gene Ala-9Val polymorphism, and the risk of schizophrenia. Med (Baltim). 2015;94:e1507.

    Article  CAS  Google Scholar 

  66. Miura I, Zhang JP, Nitta M, Lencz T, Kane JM, Malhotra AK, et al. BDNF Val66Met polymorphism and antipsychotic-induced tardive dyskinesia occurrence and severity: a meta-analysis. Schizophr Res. 2014;152:365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zai CC, Lee FH, Tiwari AK, Lu JY, de Luca V, Maes MS, et al. Investigation of the HSPG2 gene in tardive dyskinesia—new data and meta-analysis. Front Pharm. 2018;9:974.

    Article  CAS  Google Scholar 

  68. Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95:1–22.

    PubMed  PubMed Central  Google Scholar 

  69. Segman RH, Heresco-Levy U, Finkel B, Goltser T, Shalem R, Schlafman M, et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry. 2001;6:225–9.

    Article  CAS  PubMed  Google Scholar 

  70. Basile VS, Masellis M, Potkin SG, Kennedy JL. Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum Mol Genet. 2002;11:2517–30.

    Article  CAS  PubMed  Google Scholar 

  71. Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O’Donovan MC, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015;20:555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2013. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  73. Abdolmaleky HM, Thiagalingam S, Wilcox M. Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am J Pharmacogenomics. 2005;5:149–60.

    Article  CAS  PubMed  Google Scholar 

  74. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med. 2011;17:297–303.

    Article  CAS  PubMed  Google Scholar 

  75. Tannock IF, Hickman JA. Limits to personalized cancer medicine. N. Engl J Med. 2016;375:1289–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine C. van der Burg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Burg, N.C., Al Hadithy, A.F.Y., van Harten, P.N. et al. The genetics of drug-related movement disorders, an umbrella review of meta-analyses. Mol Psychiatry 25, 2237–2250 (2020). https://doi.org/10.1038/s41380-020-0660-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0660-5

This article is cited by

Search

Quick links