Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR/Cas9 increases mitotic gene conversion in human cells

Abstract

Gene conversion is a process of transferring genetic material from one homologous sequence to another. Most reported gene conversions are meiotic although mitotic gene conversion is also described. When using CRISPR/Cas9 to target the human hemoglobin subunit beta (HBB) gene, hemoglobin subunit delta (HBD) gene footprints were observed in HBB gene. However, it is unclear whether these were the results of gene conversion or PCR-mediated sequence shuffling between highly homologous sequences. Here we provide evidence that the HBD footprints in HBB were indeed results of gene conversion. We demonstrated that the CRISPR/Cas9 facilitated unidirectional sequence transfer from the homologous gene without double-strand breaks (DSB) to the one with DSBs, and showed that the rates of HBD footprint in HBB were positively correlated to the HBB insertion and deletion rates. We further showed that when targeting HBD gene, HBB footprints could also be observed in HBD gene. The mitotic gene conversion was observed not only in immortalized HEK293T cells, but also in human primary cells. Our work reveals mitotic gene conversion as an often overlooked effect of CRISPR/Cas9-mediated genome editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental strategies.
Fig. 2: Examining sgRNAs for targeting HBB.
Fig. 3: HBD footprints in HBB were the results of gene conversion.
Fig. 4: Gene conversion targeting HBD and human primary cells.

Similar content being viewed by others

Data availability

The NGS data generated in this study were submitted to SRA with accession numbers PRJNA575526 and PRJNA590474.

References

  1. Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet. 2007;8:762–75.

    CAS  PubMed  Google Scholar 

  2. Slightom JL, Blechl AE, Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980;21:627–38.

    CAS  PubMed  Google Scholar 

  3. Papadakis MN, Patrinos GP. Contribution of gene conversion in the evolution of the human beta-like globin gene family. Hum Genet. 1999;104:117–25.

    CAS  PubMed  Google Scholar 

  4. Zangenberg G, Huang MM, Arnheim N, Erlich H. New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Nat Genet. 1995;10:407–14.

    CAS  PubMed  Google Scholar 

  5. Mussotter T, Bengesser K, Hogel J, Cooper DN, Kehrer-Sawatzki H. Population-specific differences in gene conversion patterns between human SUZ12 and SUZ12P are indicative of the dynamic nature of interparalog gene conversion. Hum Genet. 2014;133:383–401.

    PubMed  Google Scholar 

  6. Steinberg MH, Adams JG 3rd. Hemoglobin A2: origin, evolution, and aftermath. Blood. 1991;78:2165–77.

    CAS  PubMed  Google Scholar 

  7. Manchinu MF, Marongiu MF, Poddie D, Casu C, Latini V, Simbula M, et al. In vivo activation of the human delta-globin gene: the therapeutic potential in beta-thalassemic mice. Haematologica. 2014;99:76–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams JG, Morrison WT, Steinberg MH. Hemoglobin Parchman—double crossover within a single human gene. Science. 1982;218:291–3.

    CAS  PubMed  Google Scholar 

  9. Petes TD. Evidence that structural variants within the human omega-globin protein may reflect genetic interactions between the omega-globin and beta-globin genes. Am J Hum Genet. 1982;34:820–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Petes T, Fink GR. Gene conversion between repeated genes. Nature. 1982;300:216–7.

    CAS  PubMed  Google Scholar 

  11. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.

    CAS  PubMed  Google Scholar 

  14. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.

    PubMed  PubMed Central  Google Scholar 

  16. Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, et al. CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol Ther. 2016;24:1561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, et al. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8:360ra134.

    PubMed  PubMed Central  Google Scholar 

  19. Antoniani C, Meneghini V, Lattanzi A, Felix T, Romano O, Magrin E, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human beta-globin locus. Blood. 2018;131:1960–73.

    CAS  PubMed  Google Scholar 

  20. Ye L, Wang J, Tan Y, Beyer AI, Xie F, Muench MO, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and beta-thalassemia. Proc Natl Acad Sci USA. 2016;113:10661–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bothmer A, Phadke T, Barrera LA, Margulies CM, Lee CS, Buquicchio F, et al. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat Commun. 2017;8:13905.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. Elife. 2017;6. pii: e27873. https://doi.org/10.7554/eLife.27873.

  24. Wang GC, Wang Y. Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Appl Environ Microbiol. 1997;63:4645–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al. Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol. 2006;24:680–6.

    CAS  PubMed  Google Scholar 

  26. Smyth RP, Schlub TE, Grimm A, Venturi V, Chopra A, Mallal S, et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene. 2010;469:45–51.

    CAS  PubMed  Google Scholar 

  27. Odelberg SJ, Weiss RB, Hata A, White R. Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res. 1995;23:2049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983;33:25–35.

    CAS  PubMed  Google Scholar 

  29. Lu B, Javidi-Parsijani P, Makani V, Mehraein-Ghomi F, Sarhan WM, Sun D, et al. Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res. 2019;47:e44.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lyu P, Javidi-Parsijani P, Atala A, Lu B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’ genome editing. Nucleic Acids Res. 2019;47:e99.

    PubMed  PubMed Central  Google Scholar 

  31. Sanada C, Kuo CJ, Colletti EJ, Soland M, Mokhtari S, Knovich MA, et al. Mesenchymal stem cells contribute to endogenous FVIII:c production. J Cell Physiol. 2013;228:1010–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Javidi-Parsijani P, Niu G, Davis M, Lu P, Atala A, Lu B. No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells. Plos One. 2017;12:e0177444.

    PubMed  PubMed Central  Google Scholar 

  33. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148.

    PubMed  PubMed Central  Google Scholar 

  34. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Park J, Lim K, Kim JS, Bae S. Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics. 2017;33:286–8.

    CAS  PubMed  Google Scholar 

  36. Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37:224–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41:9584–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507:62–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaya H, Mikami M, Endo A, Endo M, Toki S. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci Rep. 2016;6:26871.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 2015;16:257.

    PubMed  PubMed Central  Google Scholar 

  42. Smith CE, Llorente B, Symington LS. Template switching during break-induced replication. Nature. 2007;447:102–5.

    CAS  PubMed  Google Scholar 

  43. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24:939–46.

    CAS  PubMed  Google Scholar 

  44. Deppert W, Steinmayer T, Richter W. Cooperation of SV40 large T antigen and the cellular protein p53 in maintenance of cell transformation. Oncogene. 1989;4:1103–10.

    CAS  PubMed  Google Scholar 

  45. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13:659–62.

    CAS  PubMed  Google Scholar 

  46. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.

    CAS  PubMed  Google Scholar 

  47. Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, et al. Large deletions induced by Cas9 cleavage. Nature. 2018;560:E8–9.

    CAS  PubMed  Google Scholar 

  48. Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M. Inter-homologue repair in fertilized human eggs? Nature. 2018;560:E5–7.

    CAS  PubMed  Google Scholar 

  49. Haber JE. A life investigating pathways that repair broken chromosomes. Annu Rev Genet. 2016;50:1–28.

    CAS  PubMed  Google Scholar 

  50. Eikenboom JC, Vink T, Briet E, Sixma JJ, Reitsma PH. Multiple substitutions in the von Willebrand factor gene that mimic the pseudogene sequence. Proc Natl Acad Sci USA. 1994;91:2221–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36:765–71.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the North Carolina State Grant 330054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javidi-Parsijani, P., Lyu, P., Makani, V. et al. CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Ther 27, 281–296 (2020). https://doi.org/10.1038/s41434-020-0126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0126-z

This article is cited by

Search

Quick links