Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity

Abstract

Intensive efforts have been devoted to the exploration of new optoelectronic devices based on two-dimensional transition-metal dichalcogenides (TMDCs) owing to their strong light–matter interaction and distinctive material properties. In particular, photodetectors featuring both high-speed and high-responsivity performance are of great interest for a vast number of applications such as high-data-rate interconnects operated at standardized telecom wavelengths. Yet, the intrinsically small carrier mobilities of TMDCs become a bottleneck for high-speed application use. Here, we present high-performance vertical van der Waals heterostructure-based photodetectors integrated on a silicon photonics platform. Our vertical MoTe2–graphene heterostructure design minimizes the carrier transit path length in TMDCs and enables a record-high measured bandwidth of at least 24 GHz under a moderate bias voltage of –3 V. Applying a higher bias or employing thinner MoTe2 flakes boosts the bandwidth even to 50 GHz. Simultaneously, our device reaches a high external responsivity of 0.2 A W–1 for incident light at 1,300 nm, benefiting from the integrated waveguide design. Our studies shed light on performance trade-offs and present design guidelines for fast and efficient devices. The combination of two-diemensional heterostructures and integrated guided-wave nano photonics defines an attractive platform to realize high-performance optoelectronic devices, such as photodetectors, light-emitting devices and electro-optic modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vertical MoTe2-graphene heterostructure photodetector.
Fig. 2: Electrical characteristics of the photodetectors.
Fig. 3: Steady-state photoresponse of a waveguide photodetector featuring a MoTe2 thickness of 45 nm.
Fig. 4: Dynamic characterization of the photodetectors.
Fig. 5: Comparison of devices with different MoTe2 thicknesses and under different bias conditions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Google Scholar 

  2. Xiao, J., Zhao, M., Wang, Y. & Zhang, X. Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics 6, 1309–1328 (2017).

    CAS  Google Scholar 

  3. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Google Scholar 

  4. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS  Google Scholar 

  5. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    CAS  Google Scholar 

  6. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  7. Boltasseva, A. & Shalaev, V. M. Transdimensional photonics. ACS Photonics 6, 1–3 (2019).

    CAS  Google Scholar 

  8. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  9. Mueller, T., Pospischil, A. and Furchi, M.M. 2D materials and heterostructures for applications in optoelectronics. Proc. SPIE 9467, Micro- and Nanotechnology Sensors, Systems, and Applications VII (Eds. Mueller, T., Pospischil, A. & Furchi, M. M.) 946713 (SPIE, 2015).

  10. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Google Scholar 

  11. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    CAS  Google Scholar 

  12. Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

    CAS  Google Scholar 

  13. Schuler, S. et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018).

    CAS  Google Scholar 

  14. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013).

    CAS  Google Scholar 

  15. Hone, J. et al. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    Google Scholar 

  16. Phare, C. T., DanielLee, Y. H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    CAS  Google Scholar 

  17. Schall, D. et al. Record high bandwidth integrated graphene photodetectors for communication beyond 180 gb/s. In Proc. Optical Fiber Communication Conference, M2I.4 (Optical Society of America, 2018).

  18. Ma, P. et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019).

    CAS  Google Scholar 

  19. Ding, Y. et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics (in the press).

  20. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    CAS  Google Scholar 

  21. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Google Scholar 

  22. Bie, Y.-Q. Q. et al. A MoTe2 -based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    CAS  Google Scholar 

  23. Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018).

    CAS  Google Scholar 

  24. Ferrari, A. C. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Google Scholar 

  25. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  26. Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018).

    CAS  Google Scholar 

  27. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    CAS  Google Scholar 

  28. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    CAS  Google Scholar 

  29. Yu, W. et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13, 1–8 (2017).

    CAS  Google Scholar 

  30. Wang, F. et al. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Appl. Phys. Lett. 109, 193111 (2016).

    Google Scholar 

  31. Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 4, 1750–1754 (2016).

    CAS  Google Scholar 

  32. Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    CAS  Google Scholar 

  33. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 249–252 (2015).

    Google Scholar 

  34. Desiatov, B., Goykhman, I. & Levy, U. Demonstration of submicron square-like silicon waveguide using optimized LOCOS process. Opt. Express 18, 18592–18597 (2010).

    Google Scholar 

  35. Naiman, A. et al. Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform. Opt. Lett. 40, 1892–1895 (2015).

    CAS  Google Scholar 

  36. Zomer, P. J., Guimaraes, M. H. D., Brant, J. C., Tombros, N. & Van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Google Scholar 

  37. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nat. Nanotechnol. 3, 486–490 (2008).

    CAS  Google Scholar 

  38. Shin, H.-J. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Google Scholar 

  39. Nakaharai, S., Yamamoto, M., Ueno, K. & Tsukagoshi, K. Carrier polarity control in α-MoTe2 Schottky junctions based on weak Fermi-level pinning. ACS Appl. Mater. Interfaces 8, 14732–14739 (2016).

    CAS  Google Scholar 

  40. Wee, A. T. S. et al. Reducing the Schottky barrier between few-layer MoTe2 and gold. 2D Materials 4, 045016 (2017).

    Google Scholar 

  41. Goykhman, I. et al. On-Chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016).

    CAS  Google Scholar 

  42. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    CAS  Google Scholar 

  43. Chui, C., Okyay, A. & Saraswat, K. Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors. Photonics Tech. Lett., IEEE 15, 1585–1587 (2003).

    Google Scholar 

  44. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).

    CAS  Google Scholar 

  45. Lin, J.-Y. J., Roy, A. M., Nainani, A., Sun, Y. & Saraswat, K. C. Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height. Appl. Phys. Lett. 98, 092113 (2011).

    Google Scholar 

  46. Zang, H.-J., Kim, G.-S., Park, G.-J., Choi, Y.-S. & Yu, H.-Y. Asymmetrically contacted germanium photodiode using a metal-interlayer-semiconductor-metal structure for extremely large dark current suppression. Opt. Lett. 41, 3686–3689 (2016).

    CAS  Google Scholar 

  47. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2015).

    Google Scholar 

  48. He, J. et al. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat. Commun. 5, 5622 (2014).

    CAS  Google Scholar 

  49. Kato, K., Hata, S., Kawano, K. & Kozen, A. Design of ultrawide-band, high-sensitivity p-i-n photodetectors. IEICE Trans. Electron. E76-C, 214–221 (1993).

    Google Scholar 

  50. Xia, F., Mueller, T., Lin, Y.-M. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    CAS  Google Scholar 

  51. Cui, Q., Ceballos, F., Kumar, N. & Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 8, 2970–2976 (2014).

    CAS  Google Scholar 

  52. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    CAS  Google Scholar 

  53. Datta, I. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Preprint at arXiv:1906.00459. (2019).

  54. Datta, I. et al. Composite photonic platform based on 2d semiconductor monolayers. In Proc. Conference on Lasers and Electro-Optics FTu3C.2 (Optical Society of America, 2019).

  55. Polat, E. O. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5, eaaw7846 (2019).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation (grant no. 200021_165841). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, A3 Foresight by JSPS and the CREST (grant no. JPMJCR15F3), JST. This work was carried out partially at the Binnig and Rohrer Nanotechnology Centre and the FIRST Centre for Micro- and Nanotechnology at ETH Zürich.

Author information

Authors and Affiliations

Authors

Contributions

N.F., P.M., J.L. and L.N. conceived the project. N.F. and P.M. designed and fabricated the devices and performed the experiments. Y.S. contributed to the experiments. A.E. contributed to the device fabrication. T.T. and K.W. synthesized the hBN crystals. N.F., P.M., J.L. and L.N. analysed the data and co-wrote the manuscript, with support from all authors.

Corresponding authors

Correspondence to Ping Ma, Juerg Leuthold or Lukas Novotny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Table 9, discussion and refs. 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flöry, N., Ma, P., Salamin, Y. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). https://doi.org/10.1038/s41565-019-0602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0602-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing