Skip to main content
Log in

Machine learning approach to recognize ventricular arrhythmias using VMD based features

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The occurrence of life-threatening ventricular arrhythmias (VAs) such as Ventricular tachycardia (VT) and Ventricular fibrillation (VF) leads to sudden cardiac death which requires detection at an early stage. The main aim of this work is to develop an automated system using machine learning tool for accurate prediction of VAs that may reduce the mortality rate. In this paper, a novel method using variational mode decomposition (VMD) based features and C4.5 classifier for detection of ventricular arrhythmias is presented. The VMD model was used to decompose the electrocardiography (ECG) signals to extract useful informative features. The method was tested for ECG signals obtained from PhysioNet database. Two standard databases i.e. CUDB (Creighton University Ventricular Tachyarrhythmia Database) and VFDB (MIT-BIH Malignant Ventricular Ectopy Database) were considered for this work. A set of time–frequency features were extracted and ranked by the gain ratio attribute evaluation method. The ranked features are subjected to support vector machine (SVM) and C4.5 classifier for classification of normal, VT and VF classes. The best detection was obtained with sensitivity of 97.97%, specificity of 99.15%, and accuracy of 99.18% for C4.5 classifier with a 5 s data analysis window. These results were better than SVM classifier result having an average accuracy of 86.87%. Hence, the proposed method demonstrates the efficiency in detecting the life-threatening VAs and can serve as an assistive tool to clinicians in the diagnosis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharya, U. R., Fujita, H., Oh, S. L., Raghavendra, U., Tan, J. H., Adam, M., et al. (2018). Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Generation Computer Systems,79(3), 952–959.

    Google Scholar 

  • Afonso, V. X., & Tompkins, W. J. (1995). Detecting ventricular fibrillation: Selecting the appropriate time-frequency analysis tool for the application. IEEE Engineering in Medicine and Biology,14(2), 152–159.

    Google Scholar 

  • Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A., Rojo-Alvarez, J. L., Fernandez-Martinez, L., et al. (2014). Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Transactions on Biomedical Engineering,61(3), 832–840.

    Google Scholar 

  • Alonso-Atienza, F., Rojo-Alvarez, J. L., Rosado-Munoz, A. J., Vinagre, J., Garcıa-Alberola, A., & Camps-Valls, G. (2012). Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Systems with Applications,39(2), 1956–1967.

    Google Scholar 

  • Althahab, A. Q. J. (2018). A new hybrid adaptive combination technique for ECG signal enhancement. Multidimensional Systems and Signal Processing, 1–17.

  • Alzand, B. N., & Crijns, H. M. (2011). Diagnostic criteria of broad QRS complex tachycardia: Decades of evolution. EP Europace,13, 465–472.

    Google Scholar 

  • Amann, A., Tratnig, R., & Unterkofler, K. (2005). Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. BioMedical Engineering OnLine,4, 60.

    Google Scholar 

  • Anas, E. M., Lee, S. Y., & Hasan, M. K. (2011). Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Computers in Biology and Medicine,41(2), 110–114.

    Google Scholar 

  • Arafat, M. A., Chowdhury, A. W., & Hasan, M. K. (2011). A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. Signal Image Video Processing,5(1), 1–10.

    Google Scholar 

  • Arafat, M. A., Sieed, J., & Hasan, M. K. (2009). Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory. Computers in Biology and Medicine,39(11), 1051–1057.

    Google Scholar 

  • Asl, B. M., Setarehdan, S. K., & Mohebbi, M. (2008). Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine,44(1), 51–64.

    Google Scholar 

  • Balasundaram, K., Masse, S., Nair, K., Farid, T., Nanthakumar, K., & Umapathy, K. (2011). Wavelet-based features for characterizing ventricular arrhythmias in optimizing treatment options. In Conference proceedings IEEE engineering in medicine and biology society (pp. 969–972).

  • Balasundaram, K., Masse, S., Nair, K., & Umapathy, K. (2013). A classification scheme for ventricular arrhythmias using wavelets analysis. Medical & Biological Engineering & Computing,51(1–2), 153–164.

    Google Scholar 

  • Barro, S., Ruiz, R., Cabello, D., & Mira, J. (1989). Algorithmic sequential decision making in a frequency domain for life threatening ventricular arrhythmias and imitative artifacts: A diagnostic system. Journal of Biomedical Engineering,11(4), 320–328.

    Google Scholar 

  • Corinna, C., & Vladimir, N. (1995). Support-vector networks. Machine Learning,20, 273–297.

    MATH  Google Scholar 

  • Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer Methods and Programs in Biomedicine,127, 52–63.

    Google Scholar 

  • Fairooz, T., & Khammari, H. (2016). SVM classification of CWT signal features for predicting sudden cardiac death. Biomedical Physics & Engineering Express,2(2), 25006.

    Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P Ch., Mark, R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation,101(23), e215–e220.

    Google Scholar 

  • Greenhut, S. E., Dicarlo, L. A., Jenkins, J. M., Throne, R. D., & Winston, S. A. (1991). Identification of ventricular tachycardia using intracardiac electrograms: A comparison of unipolar versus bipolar waveform analysis. Pacing and Clinical Electrophysiology,14(3), 27–33.

    Google Scholar 

  • Greenwald, S. D. (1986). Development and analysis of a ventricular fibrillation detector. M.S. thesis, MIT Dept. of Electrical Engineering and Computer Science.

  • Harris, P., & Lysitsas, D. (2016). Ventricular arrhythmias and sudden cardiac death. BJA Education,16, 22–29.

    Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society,454, 903–995.

    MathSciNet  MATH  Google Scholar 

  • Jekova, I. (2007). Shock advisory tool: Detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. Biomedical Signal Processing and Control,2(1), 25–33.

    Google Scholar 

  • John, R. M., Tedrow, U. B., Koplan, B. A., Albert, C. M., Epstein, L. M., Sweeney, M. M., et al. (2012). Ventricular arrhythmias and sudden cardiac death. Lancet,380(9852), 1520–1529.

    Google Scholar 

  • Karpagachelvi, S., Arthanari, M., & Sivakumar, M. (2012). Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Computing and Applications,21(6), 1331–1339.

    Google Scholar 

  • Kaya, Y., & Pehlivan, H. (2015). Classification of premature ventricular contraction in ECG. International Journal of Advanced Computer Science and Applications, 6(7), 34–40.

    Google Scholar 

  • Khadra, L., Al-Fahoum, A., & Binajjaj, S. (2004). A new quantitative analysis technique for cardiac arrhythmia classification using bispectrum and bicoherency. In Proceedings of 26th annual international conference of the IEEE EMBS (pp. 13–16).

  • Kuo, S., & Dillman, R. (1978). Computer detection of ventricular fibrillation. In Proceedings of computer in cardiology (pp. 347–349).

  • Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Transactions on Biomedical Engineering,61(6), 1607–1613.

    Google Scholar 

  • Maji, U., Mitra, M., & Pal, S. (2013). Automatic detection of atrial fibrillation using empirical mode decomposition and statistical approach. Procedia Technology,10, 45–52.

    Google Scholar 

  • Martis, R. J., Krishnan, M. R., Chakraborty, C., Pal, S., Sarkar, D., Mandana, K. M., et al. (2010). Automated screening of arrhythmia using wavelet based machine learning techniques. Journal of Medical Systems,36(2), 677–688.

    Google Scholar 

  • Mert, A. (2016). ECG feature extraction based on the bandwidth properties of variational mode decomposition. Physiological Measurement,37(4), 530–543.

    Google Scholar 

  • Mjahadi, A., Rosado-Munoz, A., Bataller-Mompean, M., Frances-Víllora, J. V., & Guerrero-Martinez, J. (2017). Ventricular fibrillation and tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Computer Methods and Programs in Biomedicine,141, 119–127.

    Google Scholar 

  • Mohanty, M., Sahoo, S., Biswal, P., & Sabut, S. (2018). Efficient classification of ventricular arrhythmias using feature selection and C4.5 classifier. Biomedical Signal Processing and Control,44, 200–208.

    Google Scholar 

  • Mohebbi, M., & Ghassemian, H. (2008). Detection of atrial fibrillation episodes using SVM. In Proceedings conference IEEE engineering in medicine and biology society (pp. 177–180).

  • Nolle, F. M., Badura, F. K., Catlett, J. M., Bowser, R. W., & Sketch, M. H. (1986). CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Computers in Cardiology,13, 515–518.

    Google Scholar 

  • Novakovic, J. (2009). Using information gain attribute evaluation to classify sonar targets. In 17th telecommunications forum TELFOR Serbia, Belgrade (pp. 1351–1354).

  • Oh, S. L., Hagiwara, Y., Adam, M., Sudarshan, V. K., Koh, J. E., Tan, J. H., et al. (2017). Shockable versus nonshockable life-threatening ventricular arrhythmias using dwt and nonlinear features of ECG signals. Journal of Mechanics in Medicine and Biology,17(7), 1740004–1740024.

    Google Scholar 

  • Quinlan, J. R. (1993). C4.5: Programs for machine learning. Burlington: Morgan Kaufmann Publishers.

    Google Scholar 

  • Rilling, G., & Flandrin, P. (2008). One or two frequencies? The empirical mode decomposition answers. IEEE Transactions in Signal Processing,56, 85–95.

    MathSciNet  MATH  Google Scholar 

  • Roopaei, M., Boostani, R., Sarvestani, R. R., Taghavi, M., & Azimifar, Z. (2010). Chaotic based reconstructed phase space features for detecting ventricular fibrillation. Biomedical Signal Processing and Control,5, 318–327.

    Google Scholar 

  • Small, M., Yu, D., Simonotto, J., Harrison, R. G., Grubb, N., & Fox, K. A. (2002). Uncovering non-linear structure in human ECG recording. Chaos, Solitons & Fractals,13, 1755–1762.

    Google Scholar 

  • Song, M. H., Lee, J., Cho, S. P., Lee, K. J., & Yoo, S. K. (2005). Support vector machine based arrhythmia classification using reduced features. International Journal of Control, Automation and Systems,3(4), 571–579.

    Google Scholar 

  • Tripathy, R. K., Sharma, L. N., & Dandapat, S. (2016). Detection of shockable ventricular arrhythmia using variational mode decomposition. Journal of Medical Systems,40(4), 40–79.

    Google Scholar 

  • Wang, X., Gao, Y., Lin, J., Rangwala, H., & Mittu R. (2015). A machine learning approach to false alarm detection for critical arrhythmia alarms. In IEEE 14th international conference on machine learning and applications (pp. 202–207).

  • Wang, Y., Zhu, Y. S., Thakor, N., & Xu, Y. H. (2001). A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Transactions on Biomedical Engineering,48(9), 989–995.

    Google Scholar 

  • Wu, S. C., Chen, P. T., & Hsieh, J. H. (2019). Spatiotemporal features of electrocardiogram for biometric recognition. Multidimensional Systems and Signal Processing,30(2), 989–1007.

    MATH  Google Scholar 

  • Xia, D., Meng, Q., Chen, Y., & Zhang, Z. (2014). Classification of ventricular tachycardia and fibrillation based on the Lempel-Ziv complexity and EMD. In International conference on intelligent computing (pp. 322–329).

  • Xie, H. B., Gao, Z. M., & Liu, H. (2011). Classification of ventricular tachycardia and fibrillation using fuzzy similarity-based approximate entropy. Expert Systems with Applications,38(4), 3973–3981.

    Google Scholar 

  • Xu, Y., Wang, D., Zhang, W., Ping, P., & Feng, L. (2018). Detection of ventricular tachycardia and fibrillation using adaptive variational mode decomposition and boosted-CART classifier. Biomedical Signal Processing and Control,39, 219–229.

    Google Scholar 

  • Zhang, X. S., Zhu, Y. S., Thakor, N. V., & Wang, Z. (1999). Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Transactions on Biomed Engineering,46(5), 548–555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Sabut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, M., Biswal, P. & Sabut, S. Machine learning approach to recognize ventricular arrhythmias using VMD based features. Multidim Syst Sign Process 31, 49–71 (2020). https://doi.org/10.1007/s11045-019-00651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00651-w

Keywords

Navigation