Skip to main content
Log in

HSS-iteration-based iterative interpolation of curves and surfaces with NTP bases

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Based on the Hermitian and skew-Hermitian splitting iteration technique, a new progressive iteration approximation technique called HPIA for curves and surfaces interpolation with normalized totally positive (NTP) bases and its weighted version, namely WHPIA, are proposed. We take the previous iteration and the current iteration into account simultaneously, and establish a function based on NTP bases as a perturbation term in the iteration process. Convergence analyses and the approximate optimal weight of WHPIA are given. Theoretical and experimental results show that HPIA and WHPIA are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, H. (2012). Adaptive data fitting by the progressive-iterative approximation. Computer Aided Geometric Design, 29, 463–473. https://doi.org/10.1016/j.cagd.2012.03.005.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hu, Q. (2013). An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces. Applied Mathematics and Computation, 219, 9308–9316. https://doi.org/10.1016/j.amc.2013.03.053.

    Article  MathSciNet  MATH  Google Scholar 

  3. Jiang, D., Huo, L., Lv, Z., et al. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19, 3305–3319. https://doi.org/10.1109/TITS.2017.2778939.

    Article  Google Scholar 

  4. Lu, L. (2011). Sample-based polynomial approximation of rational Bézier curves. Journal of Computational and Applied Mathematics, 235, 1557–1563. https://doi.org/10.1016/j.cam.2010.08.008.

    Article  MathSciNet  MATH  Google Scholar 

  5. Jiang, D., Wang, W., Shi, L., et al. (2018). A Compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 13, 1–12. https://doi.org/10.1109/TNSE.2018.2877597.

    Article  Google Scholar 

  6. Lin, H., & Zhang, Z. (2013). An efficient method for fitting large data sets using T-splines. SIAM Journal on Scientific Computing, 35, A3052–A3068. https://doi.org/10.1137/120888569.

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13, 1–23. https://doi.org/10.1371/journal.pone.0194302.

    Article  Google Scholar 

  8. Lin, H., Jin, S., Liao, H., et al. (2015). Quality guaranteed all-hex mesh generation by a constrained volume iterative fitting algorithm. Computer-Aided Design, 67–68, 107–117. https://doi.org/10.1016/j.cad.2015.05.004.

    Article  Google Scholar 

  9. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3, 1437–1447. https://doi.org/10.1109/JIOT.2016.2613111.

    Article  Google Scholar 

  10. Okaniwa, S., Nasri, A., Lin, H., et al. (2012). Uniform B-spline curve interpolation with prescribed tangent and curvature vectors. IEEE Transactions on Visualization and Computer Graphics, 18, 1474–1487. https://doi.org/10.1109/TVCG.2011.262.

    Article  Google Scholar 

  11. Sasaki, Y., Takezawa, M., Kim, S., et al. (2017). Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions. The International Journal of Advanced Manufacturing Technology, 91, 1791–1807. https://doi.org/10.1007/s00170-016-9800-0.

    Article  Google Scholar 

  12. Lin, H., Bao, H., & Wang, G. (2005). Totally positive bases and progressive iteration approximation. Computers & Mathematics with Applications, 50, 575–586. https://doi.org/10.1016/j.camwa.2005.01.023.

    Article  MathSciNet  MATH  Google Scholar 

  13. Maekawa, T., Matsumoto, Y., & Namiki, K. (2007). Interpolation by geometric algorithm. Computer-Aided Design, 39, 313–323. https://doi.org/10.1016/j.cad.2006.12.008.

    Article  Google Scholar 

  14. Huo, L., & Jiang, D. (2019). Stackelberg game-based energy-efficient resource allocation for 5G cellular networks. Telecommunication Systems, 23, 1–11. https://doi.org/10.1007/s11235-019-00564-w.

    Article  Google Scholar 

  15. Qi, D., Tian, Z., Zhang, Y., et al. (1975). The method of numeric polish in curve fitting. Acta Mathematica Sinica, 18, 173–184.

    Google Scholar 

  16. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169. https://doi.org/10.1016/j.neucom.2016.07.056.

    Article  Google Scholar 

  17. Lin, H., Wang, G., & Dong, C. (2004). Constructing iterative non-uniform B-spline curve and surface to fit data points. Science in China Series F, 47, 315–331. https://doi.org/10.1360/02yf0529.

    Article  MathSciNet  MATH  Google Scholar 

  18. Huo, L., Jiang, D., & Lv, Z. (2018). Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Computers & Electrical Engineering, 66, 316–331. https://doi.org/10.1016/j.compeleceng.2017.09.009.

    Article  Google Scholar 

  19. Lin, H., & Zhang, Z. (2011). An extended iterative format for the progressive-iteration approximation. Computers & Graphics, 35, 967–975. https://doi.org/10.1016/j.cag.2011.07.003.

    Article  Google Scholar 

  20. Deng, C., & Lin, H. (2014). Progressive and iterative approximation for least squares B-spline curve and surface fitting. Computer-Aided Design, 47, 32–44. https://doi.org/10.1016/j.cad.2013.08.012.

    Article  MathSciNet  Google Scholar 

  21. Lu, L. (2010). Weighted progressive iteration approximation and convergence analysis. Computer Aided Geometric Design, 27, 129–137. https://doi.org/10.1016/j.cagd.2009.11.001.

    Article  MathSciNet  MATH  Google Scholar 

  22. Delgado, J., & Peña, J. M. (2007). Progressive iterative approximation and bases with the fastest convergence rates. Computer Aided Geometric Design, 24, 10–18. https://doi.org/10.1016/j.cagd.2006.10.001.

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng, C., & Ma, W. (2012). Weighted progressive interpolation of Loop subdivision surfaces. Computer-Aided Design, 44, 424–431. https://doi.org/10.1016/j.cad.2011.12.001.

    Article  Google Scholar 

  24. Jiang, D., Wang, Y., Lv, Z., et al. (2019). Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics,. https://doi.org/10.1109/TII.2019.2930226.

    Article  Google Scholar 

  25. Hu, L., Shou, H., & Fang, S. (2017). A PIA optimization algorithm for non-uniform B-spline curves and surfaces. International Journal of Modelling and Simulation, 37, 167–177. https://doi.org/10.1080/02286203.2017.1309260.

    Article  Google Scholar 

  26. Jiang, D., Huo, L., & Song, H. (2018). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 1, 1–12. https://doi.org/10.1109/TNSE.2018.2861388.

    Article  Google Scholar 

  27. Zhang, L., Ge, X., & Tan, J. (2016). Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights. The Visual Computer, 32, 1109–1120. https://doi.org/10.1007/s00371-015-1170-3.

    Article  Google Scholar 

  28. Lin, H., Cao, Q., & Zhang, X. (2018). The convergence of least-squares progressive iterative approximation with singular iterative matrix. Journal of Systems Science and Complexity, 31, 1618–1632. https://doi.org/10.1007/s11424-018-7443-y.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, H., Maekawa, T., & Deng, C. (2018). Survey on geometric iterative methods and their applications. Computer-Aided Design, 95, 40–51. https://doi.org/10.1016/j.cad.2017.10.002.

    Article  Google Scholar 

  30. Peña, J. M. (1999). Shape preserving representations in computer aided geometric design. Commack: Nova Science Publishers.

    MATH  Google Scholar 

  31. Wang, F., Jiang, D., Qi, S., et al. (2019). An adaptive routing algorithm for integrated information networks. China Communications, 16, 195–206. https://doi.org/10.23919/j.cc.2019.07.015.

    Article  Google Scholar 

  32. Luo, L., Jiang, D., Zhu, X., et al. (2019). An SDN-based fine-grained measurement and modeling approach to vehicular communication network traffic. International Journal of Communication Systems,. https://doi.org/10.1002/dac.4092.

    Article  Google Scholar 

  33. Bai, Z.-Z., Golub, G. H., & Ng, M. K. (2003). Hermitian and skew-symmetric splitting methods for non-hermitian positive definite linear systems. SIAM Journal on Matrix Analysis and Applications, 24, 603–626. https://doi.org/10.1137/S0895479801395458.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, F., Jiang, D., Wen, H., et al. (2019). Adaboost-based security level classification of mobile intelligent terminals. The Journal of Supercomputing,. https://doi.org/10.1007/s11227-019-02954-y.

    Article  Google Scholar 

  35. Golub, G. H., & Vanderstraeten, D. (2000). On the preconditioning of matrices with skew-symmetric splittings. Numerical Algorithms, 25, 223–239. https://doi.org/10.1023/A:1016637813615.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, C. L., & Bai, Z. Z. (2001). Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices. Linear Algebra and Its Applications, 330, 215–218. https://doi.org/10.1016/S0024-3795(01)00275-0.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gu, C., & Tian, Z. (2009). On the HSS iteration methods for positive definite Toeplitz linear systems. Journal of Computational and Applied Mathematics, 224, 709–718. https://doi.org/10.1016/j.cam.2008.06.002.

    Article  MathSciNet  MATH  Google Scholar 

  38. Bai, Z. Z., & Benzi, M. (2017). Regularized HSS iteration methods for saddle-point linear systems. BIT Numerical Mathematics, 57, 287–311. https://doi.org/10.1007/s10543-016-0636-7.

    Article  MathSciNet  MATH  Google Scholar 

  39. Bai, Z. (2011). On Hermitian and skew-Hermitian splitting ietration methods for the continuous sylvester equations. Journal of Computational Mathematics, 29, 185–198. https://doi.org/10.4208/jcm.1009-m3152.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Foundation of China (No. 61572430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huahao Shou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Shou, H. & Dai, Z. HSS-iteration-based iterative interpolation of curves and surfaces with NTP bases. Wireless Netw 27, 3523–3535 (2021). https://doi.org/10.1007/s11276-019-02224-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02224-y

Keywords

Navigation